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Goldfish (Carassius auratus) are excellent model organisms for the neuroendocrine signaling and the reg-
ulation of reproduction in vertebrates. Goldfish also serve as useful model organisms in numerous other
fields. In contrast to mammals, teleost fish do not have a median eminence; the anterior pituitary is inner-
vated by numerous neuronal cell types and thus, pituitary hormone release is directly regulated. Here
we briefly describe the neuroendocrine control of luteinizing hormone. Stimulation by gonadotropin-
releasing hormone and a multitude of classical neurotransmitters and neuropeptides is opposed by the
potent inhibitory actions of dopamine. The stimulatory actions of y-aminobutyric acid and serotonin are
also discussed. We will focus on the development of a cDNA microarray composed of carp and goldfish
sequences which has allowed us to examine neurotransmitter-regulated gene expression in the neu-
roendocrine brain and to investigate potential genomic interactions between these key neurotransmitter
systems. We observed that isotocin (fish homologue of oxytocin) and activins are regulated by multiple
neurotransmitters, which is discussed in light of their roles in reproduction in other species. We have
also found that many novel and uncharacterized goldfish expressed sequence tags in the brain are also
regulated by neurotransmitters. Their sites of production and whether they play a role in neuroendocrine
signaling and control of reproduction remain to be determined. The transcriptomic tools developed to
study reproduction could also be used to advance our understanding of neuroendocrine-immune inter-
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actions and the relationship between growth and food intake in fish.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Teleosts represent more than half of all vertebrate species and
are adapted to a wide range of marine and freshwater habitats
(Nelson, 2006). Numerous characteristics of the goldfish (Carassius
auratus; reviewed in Trudeau, 1997) make this species an excel-
lent model for understanding neuroendocrine signaling and the
regulation of reproduction in vertebrates, including commercially
important teleost fish.

In temperate climates in the northern hemisphere, goldfish
reproduce annually in April and May. This reproductive cycle is
primarily regulated through the release of luteinizing hormone
(LH; previously called gonadotropin-II or GtH-II) which is struc-
turally and functionally similar to mammalian LH (Blazquez et
al, 1998a,b). LH is important because it is an essential reg-
ulator of annual gonadal growth cycles, sex steroid and sex
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pheromone synthesis, and sperm production in males or ovulation
in females during the breeding season. Failure of an environmental
or endocrine signal to activate the neural LH release mechanisms
at spawning may lead to reduced fertility. LH release is regu-
lated by the stimulatory and inhibitory actions of multiple forms
of gonadotropin-releasing hormone (GnRH) and dopamine (DA),
respectively (Blazquez et al., 1998a,b; Peter et al., 1986; Omeljaniuk
et al.,, 1987). GnRH and LH release are regulated by interactions
between a multitude of classical neurotransmitters and neuropep-
tides (Trudeau, 1997) (Fig. 1). In teleosts, the gonadotrophs, as
well as other endocrine cells in the anterior pituitary, are directly
innervated (Ball, 1981). Interestingly, the teleost pituitary is highly
regionalized, with gonadotrophs being clustered in the proxi-
mal pars distalis in association with somatotrophs (Ball, 1981),
which allows for the precise determination of the preoptic telen-
cephalic and hypothalamic origins of hypophysiotropic inputs to
the pituitary using tract-tracing methods (Anglade et al., 1993).
This is in contrast to mammals and other tetrapods, which have
a hypothalamic-hypophyseal blood portal system, and for which
multiple neurotransmitter and neuropeptidergic inputs converge
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Fig. 1. Schematic representation of the reproductive neuroendocrine axis in the brain of the goldfish. Arrows indicate stimulation. Bulbous arrows indicate inhibition. The

diamond-tipped arrow indicates a speculated pathway. See text for abbreviations.

at the median eminence. It is thus very difficult to determine the
origins of the hypophysiotropic neurons in tetrapod models. Recent
work has taken advantage of the regionalized distribution of cells in
the fish pituitary to demonstrate a unique reciprocal paracrine rela-
tionship between gonadotrophs and somatotrophs that is mediated
by LH and growth hormone (GH) (Wong et al., 2006).

The interactions between the neuropeptide GnRH, the cate-
cholamine DA and amino acid y-aminobutyric acid (GABA) (Fig. 1)
form the central core of our understanding of the integrated con-
trol of LH in fish, which has been compared previously to parallel
systems in the rat (Trudeau, 1997). The multiplicity of peptides and
receptors and the central role of GnRH has been reviewed rather
extensively (Guilgur et al., 2006; Klausen et al., 2002; Lethimonier
et al., 2004), and will not be covered here. Numerous other neu-
ropeptides and neurotransmitters are involved (Trudeau, 1997;
Trudeau et al., 2000), and with the exception of the indoleamine
serotonin (5HT), our understanding of their roles in fish is rather
limited. Here we will review the roles of DA, GABA and 5HT, and
advance the hypothesis that modulation of these systems is at the
foundation of complex control of LH release, and thus reproduction
in a vertebrate. Recent advances in transcriptomic analysis reveal
that neurotransmitters not only control pituitary hormone release,
but have rapid and profound receptor-mediated effects to regulate
gene expression in the neuroendocrine brain.

2. The goldfish model serves multiple disciplines

The availability of model organisms with unique characteristics,
a wide range of research reagents, and tools drive research discov-
eries in the biological sciences. The common goldfish has served
this purpose for more than 3 decades. As a member of one of the
largest vertebrate families, the Cyprinidae, goldfish are related to
important ecological and genetic models, for example fathead min-
nows and zebrafish, and to economically important cultured carp
species. Perhaps the most significant scientific advances resulting

from research on goldfish are largely related to neuroendocrine sig-
naling and how the brain regulates growth, feeding, reproduction,
pituitary and gonadal physiology, sex pheromones and behaviour,
and stress response (Bernier and Peter, 2001; Chang et al., 2000;
Martyniuk et al., 2006; Nero et al., 2006; Trudeau et al., 2005;
Volkoff et al., 2005; Wagg and Lee, 2005; Zheng and Stacey, 1997)
(and references therein). Indeed, basic discoveries on reproductive
neuroendocrine signaling in goldfish by R.E. Peter’s group led to the
development of an internationally successful commercial spawn-
ing kit named OVAPRIM® and marketed to the aquaculture industry
by Syndel Inc. (www.syndel.com) in Vancouver, BC.

Goldfish also serve as useful model organisms in the fields of
cell biology, immunology, toxicology, endocrine disruption, molec-
ular evolution and comparative genomics, neurobiology, olfaction,
learning and memory, vision, and taste (Bretaud et al.,2002; Gomez
et al., 2006; Hanington et al., 2006; Huesa et al., 2005; Lee et al.,
1997; Luo et al., 2006; Nakamachi et al., 2006; Preuss et al., 2006;
Szczerbik et al., 2006; Yamaguchi et al., 2006).

3. Dopamine (DA) is the key inhibitor of LH release

The catecholamines, dopamine (DA), norepinephrine (NE), and
epinephrine (E) are all produced from tyrosine in a sequential
manner. DA is synthesized from the hydroxylation and subsequent
decarboxylation of tyrosine through the action of the enzymes tyro-
sine hydroxylase (TH) and DOPA decarboxylase (DDC; also known
as aromatic amino acid decarboxylase, AAADC), respectively.
DA can then be converted into NE through further hydroxyla-
tion by dopamine -hydroxylase (DBH), and subsequently, into
E through the methylation of NE via phenylethanolamine N-
methyltransferase (PNMT). TH catalyzes the rate-limiting step in
the process (Levitt et al., 1965) and is regulated by a variety of
different mechanisms (reviewed by Kumer and Vrana, 1996). It
was recently shown that goldfish possess olfactory sensitivity to
dopamine and epinephrine as well as their 3-O-methoxy deriva-
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tives, metadrenaline and 3-O-methoxytyramine (Hubbard et al.,
2003), raising the intriguing possibility that catecholamines and/or
their metabolites may be used in external chemical communica-
tion. DA is the only identified inhibitor of LH release in goldfish and
is well studied and will be addressed further. In contrast, the role
of NE and E are less clear and will not be discussed.

Dopamine is involved in four main pathways in the vertebrate
CNS: the mesolimbic (pleasure and reward, addiction), the meso-
cortical (learning and memory), the nigrostriatal (movement, and
hence Parkinson’s disease), and the tuberoinfundibular pathways.
Neuroanatomical features of the catecholaminergic systems in
goldfish and zebrafish are well described (Kaslin and Panula, 2001;
Ma, 2003; Northcutt, 2006; Rink and Wullimann, 2001; Smeets and
Gonzalez, 2000; Wullimann and Mueller, 2004; Wullimann and
Rink, 2002; Ikenaga et al., 2006; Butler and Hodos, 2005). The area
dorsali telencephali, pars dorsalis has been identified as being the
striatum based on the presence of TH and lack of DBH immunore-
activity (Hornby and Piekut, 1990). There is still considerable
debate to whether fish possess a defined nigrostriatal pathway.
Based on hodologic and anatomical studies in the Senegal bichir
(Reiner and Northcutt, 1992) and zebrafish (Rink and Wullimann,
2001), the periventricular posterior tuberculum (TPp) is a good
candidate of the ventral tegmental area and substantia nigra
of tetrapods. However, based on functional and neurochemical
studies by dopamine depletion via 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP; a selective dopaminergic neurotoxin)
in goldfish (Goping et al., 1995; Poli et al., 1990; Pollard et al.,
1992, 1996), it appears that the telencephalic nucleus pars medi-
alis is also a good candidate as the fish homolog of the tetrapod
substantia nigra. A more recent study in the zebrafish (Kaslin and
Panula, 2001) provides support to both tuberal and intrinsic telen-
cephalic nigrostriatal hypotheses; however, the authors of the study
are more inclined towards the tuberal hypothesis based on their
results. The lack of information of a definitive substantia nigra in
fish is a disadvantage not only to the goldfish model, but to all fish
models, for the study of diseases involving movement disorders
such as Parkinson’s disease.

While goldfish have been used to investigate the role of DA in
motivation, memory, and learning (Mattioli et al., 1995, 1997; Zeller
et al., 1976; Medalha and Mattioli, 2007), most research involv-
ing DA and fish has been in the area of reproduction and growth.
However, the role of DA in reproduction is not limited to fish, as it
is implicated in the reproduction of amphibians, birds, mammals
including humans, and even crustaceans (Vidal et al., 2004).

In goldfish, the gonadotrophs located in the proximal pars
distalis (Kah, 1986) are directly innervated by GnRH neurons
originating in the anteroventral preoptic area and latero-basal
hypothalamus (Ball, 1981; Peter and Paulencu, 1980; Kah et al.,
1987). A surge of LH is responsible for ovulation (Stacey et al., 1979)
and it is clear that ovulation is due in part to the disinhibition of
DA (Anglade et al., 1991; Chang and Peter, 1983). Two main TH-
immunoreactive (TH-ir) tracts were traced from preoptic cells to
the infundibulum in the goldfish (Hornby et al., 1987). DA has been
shown to inhibit LH release directly from the goldfish pituitary
(Omeljaniuk et al., 1987) as well as GnRH-stimulated LH release (De
Leeuw et al., 1989). Significantly, it is the only identified inhibitor of
LH in this species (Trudeau, 1997; Peter et al., 1986). Several intra-
cellular signaling pathways are involved in LH synthesis and release
in gonadotrophs, and DA may act to inhibit several points in these
signal transduction cascades (Van der Kraak et al., 1998), including
inhibition of GnRH-induced CaZ* mobilization, cAMP generation,
and protein kinase C-dependent mechanisms (Chang et al., 1993;
Chang and Jobin, 1994). DA has also been shown to down-regulate
goldfish pituitary GnRH receptors (De Leeuw et al., 1989) and to
inhibit the stimulatory actions of GABA (Fig. 1; for review see

Table 1
Comparison of the Dy and D, receptor classes in the goldfish (derived from reference
Callier et al., 2003)

DA receptor class D D,

Activity Stimulate AC? Inhibit AC; modulate

VGCCP and VGKC©

Subtypes D1a/D1, D1g/Ds, Dic D3, D3, Dy
Third cytoplasmic Short Long
loop
C-terminal Long Short
G protein Gs/Gof class of Ga proteins Gi/G, class of Ga proteins
Genomic DNA Intronless Several large introns

2 AC=adenylate cyclase.
b VGCC=voltage-gated calcium channel.
¢ VGKC = voltage-gated potassium channel.

Trudeau, 1997; Trudeau et al., 2000). Levels of mRNA for the GABA
synthetic enzyme glutamic acid decarboxylase 67 (GADg7) have
been shown to be up-regulated in goldfish telencephalon and optic
tectum (Hibbert et al., 2004) by dopaminergic loss following MPTP
injections, suggesting that DA inhibits the production of GABA. Fur-
thermore, the tyrosine hydroxylase inhibitor, a-methyl-p-tyrosine
(aMPT), has also been shown to significantly deplete DA levels in
the goldfish brain and pituitary (Trudeau et al., 1993a,b,c; Chang et
al., 1985) and to potentiate the response of LH to GnRH (Peter et al.,
1986). DA has recently been found to be implicated in maintaining
the European eel, Anguilla anguilla, in a pre-pubertal state for many
years (Vidal et al., 2004).

In order for DA to be such a potent inhibitor of LH secre-
tion and reproduction, we propose that it must inhibit multiple
LH-stimulatory systems. Various pharmacological manipulations
reducing DA function also potentiate GABA-mediated LH release
(Trudeau et al., 1993a,b,c). DA depletion increases GABA synthe-
sis (Trudeau et al., 1993a,b,c) supporting our working hypothesis
of reciprocal DAergic and GABAergic inhibition (Fig. 1) as an ele-
ment in the control of LH release (see also Section 4). Moreover,
this inhibition of DA synthesis by GABA is at least partially medi-
ated by rapid effects to decrease the expression of TH (Martyniuk et
al,, 2007a,b). There are numerous other neurohormones that stim-
ulate LH release in goldfish (Trudeau, 1997; Trudeau et al., 2000).
Dopaminergic inhibition of these multiple other stimulatory sig-
naling pathways is suspected but remains to be fully substantiated
experimentally. There is, however, one example that serves to illus-
trate this point. Secretogranin-II (SGII) is a large secretory vesicle
protein and well-characterized marker of the regulated secretory
pathway that undergoes processing by prohormone convertases to
produce the bioactive peptide secretoneurin (SN). SN is a 34 amino
acid peptide that stimulates LH release in goldfish pretreated with a
DA receptor antagonist (Blazquez et al., 1998a,b; Zhao et al., 2006),
very much a corollary to the situation with GnRH-stimulated LH
release at some periods of the reproductive cycle (Trudeau, 1997;
Peter et al., 1986).

Dopamine exerts its effects via seven-transmembrane domain,
G-protein-coupled receptors, which are separated into the D; and
D, receptor classes (Kebabian and Calne, 1979). The two classes dif-
fer both structurally and functionally (Table 1; reviewed in Missale
et al., 1998; Callier et al.,, 2003), as well as pharmacologically
(reviewed in Seeman and Van Tol, 1994). The current hypothesis
is that Dy and D, receptors arose through convergent evolution
and independently evolved the ability to bind DA (Callier et al.,
2003).

Generally, the D; class of receptors stimulate cAMP production
whereas the D, class of the receptors inhibit cAMP production
(Kebabian and Calne, 1979), and also modulate the activity of
voltage-gated calcium and potassium channels. The actions of
dopamine receptors are achieved via the coupling of a G-protein.
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The various G-proteins coupled to dopamine receptors have been
reviewed (Sidhu and Niznik, 2000).

The D class can be subdivided into the Dy4/D1, D1g/Ds5, and
D¢ receptor subtypes in fish (reviewed in Le Crom et al., 2003).
The D, receptor class can be further categorized into the D, D3,
and D4 subtypes. In mammals, two alternately spliced D, receptors
have been identified as having short (D,s) or long (D5 ) third cyto-
plasmic loops, differing by 29 amino acids (Monsma et al., 1989).
There is currently no evidence that fish or amphibians contain an
alternatively spliced variant of the D, receptor (Hirano et al., 1998;
Levavi-Sivan et al., 2005; Macrae and Brenner, 1995; Martens et
al., 1993; Vacher et al., 2003), suggesting this post-transcriptional
modification occurred recently in the vertebrate lineage (Macrae
and Brenner, 1995). Partial DNA sequences for DA receptors, DA
transporter (DAT) as well as for the biosynthetic enzymes for DA
and NE have been identified in goldfish (Table 2).

Many factors contribute to the development of DAergic neurons.
This has been most studied in the zebrafish, and include regu-
lation by numerous transcription factors and signaling pathways
including the Orthopedia homeodomain (Ryu et al., 2007), neu-
rogeninl (Jeong et al., 2006), pax6 (Wullimann and Rink, 2001),
tof/fezl (Levkowitz et al., 2003), as well as Shh, FGF8, Nodal/TGF, and
retinoic acid (reviewed in Ryu et al., 2006). It was recently found
that the D, receptors are expressed developmentally before the D¢
receptors in zebrafish (Li et al., 2007). In what has been termed
D1/D, synergism (LaHoste et al., 1993), some effects of dopamine
action are observed, in mammals, only if both D; and D, receptors
are stimulated concurrently (reviewed in Dziedzicka-Wasylewska,
2004). Further experimentation in fish is needed to establish if this
occurs in lower vertebrates and whether this receptor synergism
has a role to play in the control of reproduction.

Plasma membrane transporters modulate the action of neuro-
transmitters by neurotransmitter reuptake by the presynaptic axon
and surrounding glial processes (Kimmel and Joyce, 2003). The DA
receptors and transporter are the primary targets in the treatment
of schizophrenia and Parkinson’s disease, and, therefore have a
rich assortment of effective pharmacological agents (for review see
Missale et al., 1998; Seeman and Van Tol, 1994; Civelli et al., 1993;
Chen and Reith, 2000; Uhl, 2003). Domperidone, a selective D,
receptor antagonist, has been shown to decrease DA in the goldfish
pituitary without affecting DA levels in the hypothalamus or telen-
cephalon, as it does not cross the blood-brain barrier (Sloley et al.,
1991). Quinpirole, a selective D, receptor agonist, has been shown
to reduce the mRNA level of the tilapia GnRH receptor (Levavi-Sivan
etal., 2004). Quinpirole and SKF 38393, a selective D; receptor ago-
nist, which are both able to cross the blood-brain barrier, were
used separately to examine their effects on gene expression in the
hypothalamus of goldfish, compared with other neurotransmitter
systems (Table 3; Fig. 4).

Table 2
Partial coding sequences for neurotransmitter receptors, transporters, biosynthetic
and degradation enzymes recently cloned from the goldfish by our laboratory

System Gene Accession number
Dopamine Dip EF377327
Dic EF396233
D, EF382625
D3 EF382624
Dy EF640988
DAT EF371919
TH AY644727
DDC EF371918
DBH EF396232
Serotonin 5HTR A EF493019
5HTRg EF493017
5HTR;c EF493018
5HTR3 EF490968
5HTRs EF493015
5HTR; EF493016
SERT EF490971
TRPH1 EF490969
TRPH2 EU003451
MAO EF490970
GABA GABAAq1 AY640225
GABApg: AY640229
GABApg4 AY635467
GABAy1 AY640226
GABAjy> AY640227
GABAg; AY640228
GAT1 AY640223
GAT3 AY640224
GABA-T DQ287923
Glu NR2A EF645246
NR2B EF645245
Kisspeptin KISS1R EU622877

Note: the D14 receptor had previously been cloned from the goldfish retina (Frail et
al., 1993).

Studies using the goldfish have demonstrated that intraperi-
toneal (i.p.) administration of MPTP causes a selective depletion
of DA and NE, without altering the serotonergic system (Goping et
al,, 1995; Poli et al., 1990; Pollard et al., 1992, 1996; Hibbert et al.,
2004) and induces a parkinsonian syndrome which parallels that
of mammals (Pollard et al., 1996). To act as a neurotoxin, MPTP
must first be converted to MPP*, its oxidized congener, by astro-
cytes, which is then selectively taken up by dopaminergic neurons
(Snyder et al., 1986; Javitch and Snyder, 1984). MPP* accumulates
in the mitochondria where it inhibits complex I of the respiratory
chain leading to anoxia, anaerobic respiration, and cell death (Vyas
et al., 1986; Singer et al., 1987). A light and electron microscopic
study on the effect of MPTP on DAergic neurons in the goldfish brain
showed progressive irregularities occurring on the contours of the

Table 3

Descriptions of the experiments used in the cluster analysis

Experiment Mechanism Date GSI? (%) Description Exposure Sex

MPTP + aMPT DA depletion Early-May 4.7 +0.6 i.p.-injected 50 pg/g MPTP on Day 0, i.p.-injected 24 h after final injection Female
240 pg/g aMPT on Day 5

SKF 38393 D, agonist Mid-May 45+13 i.p-injected 40 p.g/g 5h Female

Quinpirole D, agonist Mid-May 45413 i.p-injected 2 pug/g 5h Female

Fluoxetine SSRIP Mid-December N.D.¢ i.p.-injected 5 ng/g twice a week for 17 days, for a 24 h after final injection Female
total of five injections

Muscimol GABA, agonist Late-August N.D.4 i.p.-injected with 1 pug/g 6h Female

Baclofen GABAg agonist Early-September N.D.d i.p.-injected with 10 pg/g 6h Female

2 Gonadosomatic index.
b Selective serotonin reuptake inhibitor.

¢ Not determined; expected GSI for mid-December is approximately 2.5% (Kobayashi et al., 1986).

d
female goldfish of 2.1 (+0.1)% (unpublished).

Not determined; expected GSI for this time of year is approximately 2% (Kobayashi et al., 1986). A separate experiment conducted in mid-September confirmed a GSI for
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neuronal nuclei and progressive granularization of nucleoplasm,
suggesting an apoptotic mechanism of cell damage (Goping et al.,
1995). These results led Pollard et al. (1993) to propose the goldfish
as amodel for drug discovery in Parkinson’s disease research. While
MPTP is an irreversible neurotoxin in mammals, including primates
and humans (Burns et al., 1983; Heikkila et al., 1984; Langston et
al., 1983), goldfish appear to completely recover to basal DA and
NE levels after 6 weeks (Poli et al., 1992). The study was unable
to determine whether catecholamine recovery was due to regen-
erative processes or by metabolic compensation of the surviving
neurons. Nevertheless, these results are suggestive of a degree of
plasticity in DAergic systems in the adult fish brain as is the case
in the fish optic system (Braisted and Raymond, 1992; Matsukawa
et al,, 2004). We have used a similar MPTP-treated goldfish model,
in combination with aMPT, to explore the effects of DA depletion
on LH release and regulation of hypothalamic gene expression (see
Section 7, Table 3 and Fig. 4).

Dopamine neurons may also mediate steroid negative feed-
back on LH release. The inhibitory action of DA on LH varies
during the seasonal reproductive cycle in goldfish (Trudeau et al.,
1993a,b,c). Reducing the DAergic inhibition of LH, for example,
by blocking DA action through specific DA antagonists, has been
shown to significantly enhance LH secretion in the goldfish, par-
ticularly in late ovarian recrudescence (Peter et al., 1986; Sloley
et al., 1991; Sokolowska et al., 1985; Omeljaniuk et al., 1989) sug-
gesting that the tone of DA inhibition increases in parallel with
gonadal development and increased steroid secretion (reviewed by
Trudeau, 1997). Indeed, testosterone and estradiol increase pitu-
itary dopamine turnover rates, and the serum LH response to DA
antagonist injections relative to sexually regressed fish without
supplemental steroids (Trudeau et al., 1993a,b,c). While this has yet
to be demonstrated conclusively, this is likely a direct effect of the
sex steroids on DA neurons. A neuroanatomical study of the trout
demonstrated that TH-positive DA neurons express the estrogen
receptor-a (ERat) protein (Linard et al., 1996) whereas trout GnRH
neurons do not express the ERa (Navas et al., 1995). In marked
contrast, the positive feedback actions of the sex steroids do not
appear to involve changes in DA function, but rather are a result
of increased pituitary sensitivity to GnRH, and increased GABAer-
gic activity (Trudeau et al., 1993a,b,c). The co-activation of both
the positive and negative sex steroid feedback mechanisms during
the seasonal reproductive cycle allows for dynamic and sensitive
control of LH release and thus gonadal development and function
(Trudeau, 1997; Blazquez et al., 1998a,b).

Clearly, DA serves a key inhibitory role in reproduction through
multiple mechanisms, and is intricately controlled through the
actions of other neurotransmitters (i.e. GABA) and sex steroids.

4. GABA plays multiple roles to stimulate LH release

GABA is considered to be the major inhibitory amino acid neu-
rotransmitter in the vertebrate CNS. It is largely produced from
precursor glutamate in a single step reaction by glutamic acid
decarboxylase (isoforms GAD65 and GADG67) and is degraded by
the enzyme GABA transaminase (GABA-T) into succinic semialde-
hyde. The molecular evolution of the GAD gene family has been
described previously (Lariviere et al.,, 2002) and demonstrates
that teleost fish, as in mammals, have both major GAD isoforms
present, in addition to a novel GAD ortholog we have termed
GAD3.

GABA stimulates LH release by stimulating GnRH and by
inhibiting DA neurons in the telencephalon preoptic-hypothalamic
(TEL-POA-HYP) region of the goldfish brain (Trudeau et al., 2000).
This has been shown by increasing GABA levels with the irre-

versible inhibitor of GABA-T, y-vinyl gamma (GVG), intraventricular
injection of GABA, and intraperitoneal injections of GABA agonists.
GABA-mediated LH release in likely an important physiological
signal, since we have shown that blood testosterone levels in
males also increases after GABAergic manipulations. Our previ-
ous differential display analysis indicated that pituitary SGII was
up-regulated following GVG treatment (Blazquez et al., 1998a,b).
Accompanying increases in pituitary SGII mRNA following GVG
are increases in LHf3 subunits mRNA levels (Trudeau et al., 2000).
Thus, activation of endogenous GABAergic pathways leads to acti-
vation of secretion and transcription in the pituitary. Perhaps this
is an example of ‘stimulus-transcription coupling’ as proposed by
O’Connor’s group who have observed this process in vivo in neu-
roendocrine cells in the mouse adrenal gland and brain (Mahata
et al., 2003). Increases in water temperature stimulate spawning
and increase both GABA synthesis and LH release (Fraser et al.,
2002). We developed a novel method to study GABA mRNA lev-
els and GABA synthesis rates in the same sample and determined
that there are season-dependent sex differences in the effects of
sex steroids on GABA synthesis (Bosma et al., 2001; Lariviere et
al,, 2005). Therefore, the GABAergic system transduces both exter-
nal environmental and internal hormonal feedback signals to exert
control over LH release.

The effects of GABA are mediated largely by two major
membrane-bound GABA receptor classes. The pentameric
ionotropic GABA, receptors conduct CI- and are composed of
different subunits (o1.6, P14, Y1-3, O, &, 0, and ) of which the
subunit stoichiometry influences receptor Kkinetics (reviewed
in Mathers, 1991; Sieghart, 2006). In contrast to the ionotropic
GABA, receptors, the dimeric G-protein coupled GABAg receptors
are slower acting and responsible for prolonged GABAergic signal-
ing through K* and Ca2* channels (Bormann, 2000). Phylogenetic
analysis of the GABA4 receptor subunit family shows that there are
fish homologs to mammalian GABAA receptor subunits (Martyniuk
et al., 2007a,b). Due to genome duplication events in the teleost
lineage, there appears to be multiple copies of GABA, receptor
subunits and it is presently unclear whether these represent
orthologous or paralogous pairs. It will be interesting to determine
how or if the duplicated isoforms in fish alter GABA, receptor
function and kinetics, and how they would contribute to neuroen-
docrine signaling. Genome searches also indicate the presence of
GABAg receptors in fish. Patch-clamp electrophysiological studies
indicate that both receptor subtypes are active in neuroendocrine
cells in the goldfish telencephalon and hypothalamus (Trudeau
et al., 2000). Moreover, injection of the GABA, agonist muscimol
or the GABAg agonist baclofen, both stimulate LH release within
30 min (Martyniuk et al., 2007a,b).

The classical view of neurochemical communication is that the
release of neurotransmitters at the synapse regulates the activity of
post-synaptic neurons through specific, multiple membrane recep-
tors and the resulting depolarization or hyperpolarizations affect
intracellular signaling pathways to modulate the release of stored
neurotransmitter on a millisecond scale. We have shown that GABA
can regulate the expression of its own receptor subunits in brain
over a 24h period (Martyniuk et al.,, 2005). In goldfish, a single
intraperitoneal injection of GVG increases levels of GABA approxi-
mately 3-4-fold in the neuroendocrine brain after 4 h and remains
elevated after 24 h (Trudeau et al., 1993a,b,c). The significant ele-
vation of GABA in the hypothalamus down-regulates the chicken
and fish specific GABA, receptor 34 subunit mRNA while in the
telencephalon, GABA decreases GABA, receptor [32 subunit mRNA
approximately twofold after 24 h (Martyniuk et al., 2005). Thus,
GABA appears to modulate genes involved in GABAergic synaptic
transmission that we speculate would alter GABA receptor binding
kinetics in fish.
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Fig. 2. Hypothesized post-synaptic dual effect of GABAergic signaling on gene
expression in a neuron.

GABA appears to also regulate gene transcription in the verte-
brate brain through its post-synaptic receptors as demonstrated
with both in vitro and in vivo experiments. Female goldfish injected
i.p. with muscimol showed a decrease in telencephalon GADgs but
not GADg7 abundance after 6 h. In contrast baclofen (10 j.g/g body
weight) significantly reduced GADg; but not GADgs levels in the
hypothalamus (Martyniuk et al., 2007a,b). Both agonists reduced
GABA-T expression. These data indicate that there are feedback
mechanisms to finely regulate GABA levels in the neuroendocrine
brain. Moreover, in the goldfish there are tissue differences in the
expression levels of genes that are mediated through specific GABA
receptors with differing signaling pathways (Fig. 2).

Using microarray analysis, Ghorbel et al. (2005) profiled the
genomic effects of GABA in embryonic day 18-rat hippocampal
neurons incubated with baclofen for 2h. The authors demon-
strated that cell signaling proteins, such as growth factors (e.g.
brain derived neurotrophic factor), G-protein coupled recep-
tors (e.g. 32 adrenergic receptor), and signaling molecules (e.g.
MAP2K4) were modulated after baclofen stimulation. Other molec-
ular pathways mediated by GABAg receptor activation included
endocytosis, transcription and translation, intracellular transporta-
tion. The aforementioned studies demonstrate that GABA has
multiple downstream genomic effects on, for example, transcrip-
tion/translation, cell signaling, and neuroendocrine function. There
is structural and electrophysiological evidence for kinetic and
temporal differences between the GABA, and GABAg signaling
pathways (Bormann, 2000) and it is hypothesized that temporal
differences may also occur at the level of transcriptional regula-
tion of gene expression (Fig. 2). Renier et al. (2007) have recently
reported that GABA receptor modulators such as benzodiazepines,
barbiturates, and baclofen have conserved effects in zebrafish when
compared to mammals, raising the possibility that fish can be excel-
lent pharmacogenomic models for the study of neurotransmitter
and drug interactions in the vertebrate CNS. Despite such evidence
that GABA regulates gene transcription in fish and mammals, defin-
ing the extent of this regulation is generally lacking. To address this,
our group has studied the differential effects of GABA receptor ago-
nists on gene expression in the hypothalamus that is detailed in
Section 7.

Through its stimulatory action on GnRH neurons and inhibitory
actions on the DA system, as well as its other functions outlined
in this section, GABA plays multiple roles in the stimulation of LH
release.

5. Serotonin stimulates LH release

The neurotransmitter serotonin (5HT) is synthesized from the
amino acid tryptophan through decarboxylation and a rate-limiting
hydroxylation step controlled by the enzyme tryptophan hydroxy-
lase (Grahame-Smith, 1967). There are two isoforms of the enzyme
in both mammals and fish, with tryptophan hydroxylase 2 being
more abundantly expressed in the CNS (Bellipanni et al., 2002;
Sakowski et al., 2006) and controlling brain 5HT synthesis (Zhang et
al., 2004). Serotonin is degraded by monoamine oxidase, of which
only one form exists in teleost fish (Anichtchik et al., 2006). In mam-
mals, 5HT receptors are generally classified into seven subfamilies,
based on molecular and pharmacological properties (Hoyer et al.,
2002). Second messenger signaling is G-protein-dependent, with
the exception of the 5HT; receptor, which is ionotropic and controls
Na* channels. Its activity has been shown, in human embryonic kid-
ney cell culture, to be modulated by the ratio of subunits A and B
in the pentameric ion channel (Hapfelmeier et al., 2003). Serotonin
receptors belonging to family 1 and possibly 5 interact with G; pro-
teins, whereas 5HT receptors 4,6,7 interact with Gs proteins and
2 Gq proteins, respectively (Raymond et al., 2001). We have iden-
tified some of the corresponding partial coding sequences of the
enzymes, transporter and receptors in goldfish (Table 2) that show
arelatively high sequence similarity to other vertebrates, providing
additional evidence for a conservation of the serotonergic system
that has been suggested elsewhere (Hen, 1993).

Several 5HT receptor subtypes have recently been identified to
beinvolved in GnRH and LH release. For example, 5HT receptor sub-
types 2C, 4 and 7 have been shown to mediate stimulatory effects
of 5HT on GnRH release from the immortalized mouse neuronal
cell line GT1-7, while 5HT receptor 1A has been shown to have
inhibitory effects on GnRH release in the same system (Wada et al.,
2006). Stimulation occurs through the adenylate cyclase (Wada et
al., 2006) and the phospholipase C (PLC) (Wada et al., 2006; Kim
et al,, 2006) pathways. Activation of the ionotropic receptor 5HT3,
has been shown to increase LH3 mRNA expression in a rat pitu-
itary in vitro (Quirk and Siegel, 2005). This represents a possible
mechanism for rapid modulation at the level of the pituitary.

Only a 5HT,-like receptor is known to mediate stimulatory
effects on LH release in goldfish (Somoza and Peter, 1991) and
Atlantic croaker (Khan and Thomas, 1992) at either the GnRH cell
body or nerve terminal (Yu et al., 1991). This also appears to be the
case for the red seabream (Senthilkumaran et al., 2001). Based on
the selectivity of the 5HT, antagonist ketanserin used in these stud-
ies, it is possible that this receptor has properties that are similar
to the mammalian 5HT,4 and 5HT,c type, as ketanserin has low
nanomolar affinities for both the 5HT,c and the 5HT,, receptor
(Fiorella et al., 1995). Interestingly, an increase in ketanserin bind-
ing has been observed in the hypothalamus of sexually mature rain-
bow trout when compared to juveniles, suggesting an involvement
of 5HT,-type receptors in reproduction (Agrawal and Omeljaniuk,
2000). This correlates well with our own analysis of seasonal gene
expression of the goldfish brain 5HT,¢ receptor, where the high-
est levels were detected in the reproductive phase (unpublished
data). Additionally, 5HT inhibits GH release in goldfish (Somoza
and Peter, 1991). Changes in brain receptor levels may therefore
contribute to the seasonal program of reproduction followed by
growth (Marchant and Peter, 1986; Tecott and Abdallah, 2003).

Little more is known about the mechanism of action of 5HT to
stimulate LH release in fish; however, our initial gene expression
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analysis of the effects of the selective serotonin reuptake inhibitor,
fluoxetine, suggests that other pathways are likely to be involved
(see Section 7).

6. Kisspeptin/GPR54 in fish

The recent discovery and characterization of the kisspeptin
(kiss1) system in mammals (see Kauffman et al., 2007 for review)
led to the cloning of kiss1 in zebrafish (van Aerle et al., 2008) and
medaka (Kanda et al., 2008). Potential kiss1 gene loci were also
identified in tetraodon, fugu, and sea lamprey (van Aerle et al.,
2008). The kiss1 sequence is conserved only in its active decapep-
tide site (80-100%) (van Aerle et al., 2008), while other parts of
the gene is poorly conserved (32%) (Kanda et al., 2008). This poor
conservation is also reflected in the organization of the zebrafish
kisspeptin gene which has 2 exons, whereas medaka possesses
3 exons (van Aerle et al., 2008; Kanda et al., 2008). In both fish
species, kisspeptin was found to be mainly expressed in brain,
intestine and testis, with no expression in the ovary. Further investi-
gation of kisspeptin expression distribution in the brain of medaka
revealed two distinct populations in the nucleus ventral tuberis
(NVT) and nucleus posterioris periventricularis (Npp) paralleling
findings in mammals (Kauffman et al., 2007). The expression of
kiss1 in the NVT is sexually dimorphic, favouring male fish. Injec-
tion of mammalian kisspeptin in the fathead minnow resulted
in changes of ERa, aromatase, GnRH3 and the kisspeptin recep-
tor (Kiss1r; also known as G-protein-coupled receptor 54; GPR54)
(Filby et al., 2008).

Kiss1r is more highly conserved than its ligand and has been
cloned in several fish (Mohamed et al., 2007; Nocillado et al., 2007),
including goldfish (Table 2). It is expressed in brain and ovary
in fathead minnow (Filby et al., 2008) and in tilapia its expres-
sion level is negatively regulated by continuous light exposure
(Martinez-Chavez et al., 2008). Tilapia GnRH1, GnRH2 and GnRH3
neurons express GPR54 (Parhar et al., 2004). Studies on the role
of kisspeptin, however, are generally lacking in fish and its rela-
tionship to known inhibitory (DA) and stimulatory (GABA, 5-HT)
pathways outlined in this review warrants investigation.

7. Determining potential genomic interactions and
pathways regulated by DA, GABA and 5HT

From multiple microarray experiments, we collected raw data
(Table 3) and performed unsupervised, average-linkage hierarchi-
cal clustering (Eisen et al., 1998) to investigate the interactions
of different neurotransmitter systems on gene expression in the
female goldfish hypothalamus (Fig. 4; see caption for method).
Clustering was performed in two ways. First, by clustering genes
across all of the treatments, co-expressed groups can be delineated,
many of whom share common functional properties or partici-
pate in coherent biological pathways or processes. Secondly, by
clustering between treatments it is possible to use the extraordi-
narily rich datasets from the array to identify which treatments
are most closely related to other treatments in terms of the overall
gene expression profile. Thus, it may be possible to identify shared
regulatory sequences by bioinformatic methods such as Gibbs sam-
pler (Xia, 2007) in the sets of co-upregulated or co-downregulated
genes.

Somewhat surprisingly, the quinpirole, fluoxetine, and baclofen
experiments clustered together, suggesting similarities in the
effects of these drugs on gene expression in the hypothalamus.
However, these three pharmaceuticals all target G-protein-coupled
receptors either directly (quinpirole and baclofen) or indirectly (flu-
oxetine). An additional unexpected result was that the muscimol

Table 4
Isotocin mRNA expression following various neurotransmitter system modulations
in the hypothalamus of female goldfish as determined using cDNA microarray

Experiment Effect on mRNA
MPTP + aMPT (DA depletion) Up

SKF 38393 (D; agonist) Up

Quinpirole (D, agonist) Down
Fluoxetine (SSRI) Down

Muscimol (GABA, agonist) Up
Baclofen (GABAg agonist) Down

experiment clustered with the catecholamine depletion experi-
ment (MPTP+aMPT). We speculate that this is indicative of the
inhibitory effects that GABA has on both DA (Fig. 1) and NE sys-
tems in goldfish brain (Trudeau et al., 1993a,b,c). The D¢ agonist
experiment (SKF 38393) did not cluster with any of the other exper-
iments, reflecting a distinct pharmacological profile and differential
distribution of D versus D, receptors in the brain. These data
demonstrate that the carp-goldfish microarray (Martyniuk et al.,
2006) coupled with cluster analysis can distinguish between phar-
macological manipulations. There are genes both commonly and
differentially regulated by these treatments (Figs. 5 and 6).

While it is not our intention to describe in detail all the results
of the cluster analysis, there are several interesting transcripts that
warrant further discussion here. Modulation of the DA, GABA and
5HT systems all lead to effects on isotocin gene expression (Table 4).
This is intriguing since isotocin is a reproductive neuropeptide and
the fish homolog of mammalian oxytocin (see Section 8).

As GABA has multiple roles in the stimulation of LH, the effects
of baclofen also warrants further analysis. Firstly, using PCR analy-
sis, we previously demonstrated that baclofen but not muscimol
stimulated the expression of activin 3a in goldfish hypothala-
mus (Martyniuk et al., 2007a,b). This was confirmed here in our
microarray experiment. Gene Ontology (GO) classification of the
response to baclofen was possible because there were sufficient
known genes (128 in total) that could be identified with confi-
dence (Table 5). Our data suggests that within the period of the
reproductive cycle examined, baclofen regulated a larger number
of transcripts than muscimol, perhaps reflecting the mode of action
of these GABA agonists. It is clear that activation of the GABAg
receptor leads to changes in the expression of genes involved in
multiple processes. Activin, for example, falls under both the hor-
mone activity and receptor binding GO categories. In addition, the
genes regulated by GABA agonists grouped by GO term for cel-
lular components reveals similarities and differences in types of
transcripts regulated (Fig. 3). Hypothalamic transcripts that code
for proteins largely located in the extracellular region are both
induced and decreased after GABA agonist treatment. Some exam-
ples include granulin (decreased by baclofen), isotocin (induced by
muscimol) and lipid mobilization and transport proteins such as
apolipoprotein ApoA4 (increased) and ApoE (decreased) by baclofen
in the hypothalamus. Interestingly, hypothalamic genes coding for
proteins involved in transcription factor complexes were induced
by baclofen but not muscimol. Examples include heat shock fac-
tor 2 and myocyte-specific enhancer factor 2A, two genes that are
involved in transcription anti-termination as categorized further
by GO biological process categories. In addition, genes encoding
proteins located in the nucleus such as histone 2A and a non-
histone protein high mobility group box 1 are regulated by baclofen.
We hypothesize that baclofen may have prolonged downstream
effects on the transcriptome by increasing the expression of the
molecular machinery involved in regulating transcription. How-
ever, additional studies are needed to ascertain whether prolonged
transcriptional effects are detectable after treatments with phar-
macological agents specific for neurotransmitter receptors. Isotocin
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Table 5
Enrichment analysis of functional category for differentially expressed genes in the goldfish hypothalamus exposed to baclofen
GO Term_Biology Process_4 Count % P-value Benjamini
Alcohol metabolism 7 54 0.008 0.99
Negative regulation of organismal physiological process 3 2.3 0.009 0.92
Lipid transport 4 3.1 0.009 0.83
Organelle organization and biogenesis 11 8.5 0.030 0.99
Organic acid metabolism 8 6.2 0.030 0.97
Macromolecule catabolism 7 5.4 0.032 0.95
Lipid metabolism 9 6.9 0.034 0.94
GO Term _Molecular Function_3
Hormone activity 5 3.8 0.007 0.90
Coenzyme binding 4 3.1 0.022 0.98
Receptor binding 10 7.7 0.024 0.94

DAVID programs (http://david.abcc.ncifcrf.gov/home.jsp) were used to screen GO terms for biological process at 4th level and GO terms for molecular function at 3rd level. 128
genes totally were analyzed. Only categories over three genes, scoring a statistically significant EASE score (<0.05) for over-representation are shown. Count = gene numbers;

%= percentage of over-represented gene.

and activin will be discussed further in Sections 8 and 9, respec-
tively.

8. Isotocin is a reproductive neuropeptide regulated by
multiple neurotransmitter systems

Isotocin (IST) is a nine amino acid neuropeptide synthesized
in magnocellular and parvocellular neurons of the preoptic area,
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which project widely in the brain, especially in the telencephalon,
hypothalamus and to the neural lobe of the pituitary (Saito et al.,
2004). It is the teleost homologue of mammalian oxytocin (OXT)
and has roles in a variety of physiological functions, for example,
ion homeostasis at the level of the gill (Guibbolini and Avella, 2003;
Kleszczynska et al., 2006). Importantly, there is accumulating evi-
dence for its role in fish reproduction. Pickford and Strecker (1977)
first described the stimulating effect of injected IST on spawning in
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Fig. 3. Number of transcripts categorized into cellular component (GO terms) showing differential expression after baclofen and muscimol after microarray analysis in the
hypothalamus. Note that transcripts that code for proteins found in extracellular regions are both induced and decreased after GABA agonist treatment whereas transcripts
that code for proteins found in transcription factor complexes are largely induced by baclofen treatment. Transcripts that code for proteins with a role in signal recognition
are regulated by baclofen alone.
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Fig. 4. Microarray data was retrieved from six different studies (Table 3) subjected to goldfish brain cDNA microarray. The microarrays of experiment were hybridized using
the common reference design (Yang and Speed, 2002). For each study, signals were normalized using a locally weighted scatterplot-smoothing regression (Lowess; Yang et
al., 2002) to remove intensity dependent noise. Modified t tests with q values (false-discovery rate) management were used for statistical analysis. The sets of cDNAs were
ranked based on g values and FDR threshold for the identification of differentially expressed genes was set to 0.05 (Tusher et al., 2001). 1932 cDNA genes were selected with
differential expression at least in one study (q values <0.05 and fold-change > 1.5), and were further reduced in number by removing unclassified and/or unannotated ESTs
(1415). The resultant 517 annotated genes were used to perform unsupervised, average-linkage hierarchical clustering (Eisen et al., 1998). The complete image is included in
Supplementary Material.
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Fig. 5. Number of mRNAs commonly regulated. Fig. 6. Number of mRNAs differentially regulated.
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killifish. Circulating IST levels have been found to vary seasonally
in female three-spined sicklebacks, with the highest levels occur-
ring in July, the period of reproduction for this long-day breeder
(Gozdowska et al., 2006). A similar peak was found in brain IST
mRNA expression in female masu salmon, in May, correlating with
high estradiol levels (Ota et al., 1999). The IST gene has been
shown to be estrogen-responsive, in that it possesses three estrogen
response elements (ERE) in teleosts (Venkatesh and Brenner, 1995).
The number of IST-immunorective neurons was found to be sexu-
ally dimorphic in medaka and decrease significantly after spawning
in females (Ohya and Hayashi, 2006). Some preoptic neurons in the
dwarf gourami, Colisa lalia, stained positively for both IST and GnRH
(Maejima et al., 1994), further supporting a role of IST in repro-
duction. In rainbow trout, both chicken GnRH-II and salmon GnRH
immunopositive nerve-fibers have been found to be in close prox-
imity to IST neurons and application of either GnRH form generated
synchronous Ca%* pulses in IST neurons (Saito et al., 2004). Isotocin
is also involved in sex-specific vocal courting behaviours in plain-
fin midshipman fish, Porichthys notatus (Goodson and Bass, 2000),
and changes during socially induced sex-change in blue banded
goby, Lythrypnus dalli (Black et al., 2004). Effects of OXT on LH
(Evans, 1996; Rettori et al., 1997; Robinson et al., 1992) and steroid
(Wuttke et al., 1998; Chandrasekher and Fortune, 1990; Fortune
and Voss, 1993) release have been described for mammalian mod-
els in vivo and in vitro. Similarly, in rainbow trout, IST has been
found to stimulate testosterone release at the level of the testis
in vitro (Rodriguez and Specker, 1991). Furthermore, a stimulatory
effect of mammalian OXT on sperm release has been shown in
the African catfish (Viveiros et al., 2003). The IST receptor mRNA
has been quantified in different tissues of the reproductive axis in
the white sucker, Catostomus commersoni, for example, brain and
ovary (Hausmann et al., 1995), further substantiating its status as a
reproductive neuropeptide.

MPTP, in combination with aMPT, reduced DA and NE levels
by 70% in telencephalon and by 80% and 87%, respectively, in the
hypothalamus of goldfish, relative to saline-injected controls as
determined by high-performance liquid chromatography (Popesku
et al., unpublished). This was associated with a statistically signifi-
cant (p<0.05) 1.8-fold decrease and a 1.3-fold increase of IST in the
telencephalon and hypothalamus, respectively, as determined by
real-time RT-PCR (unpublished). This result in the hypothalamus
was confirmed in our microarray experiment (Fig. 4, Table 4). The
differences in the IST response in these tissues may possibly be due
to dopaminergic action through different receptor classes in the
hypothalamus compared to the telencephalon.

The other neurotransmitter-active drugs studied in this meta-
analysis also had effects on IST. A 2-week fluoxetine treatment
resulted in a fivefold decrease of IST mRNA in the hypothala-
mus (Mennigen et al., unpublished). The GABAg receptor agonist,
baclofen, had an inhibitory effect on IST (down ~1.5-fold) whereas
the GABA, receptor agonist, muscimol, had a stimulatory effect
on IST (up ~1.3-fold) (Fig. 4). It is unclear at this time whether,
or which, neurotransmitter(s) are having direct effects on IST
release. However, electrophysiological studies in the rat support
the hypothesis that DA neurons directly innervate OXT neurons as
they express functional D, receptors (Yang et al., 1991), and TH-ir
fibres are present in the anterior part of the parvocellular preoptic
nucleus of the zebrafish brain (Kaslin and Panula, 2001). Further-
more, in situ hybridization studies in the rainbow trout revealed a
strong signal for of the D, receptor mRNA in the parvocellular pre-
optic area, but no signal was found in the magnocellular preoptic
area (Vacher et al.,, 2003). As no 5HT-ir fibres were found in close
proximity of the magnocellular or parvocellular preoptic areas of
the zebrafish (Kaslin and Panula, 2001), the effects of 5HT on IST
mRNA expression are hypothesized to be indirect, potentially by

modulation of DAergic neurons. There is currently no evidence of
the co-localization of GABA receptors on IST neurons in fish; how-
ever there is strong evidence for direct GABAergic regulation of
OXT neurons in the rat (Pittman et al., 1998). It is speculated that
GABA in goldfish may be affecting IST mRNA levels both directly
and indirectly by modulating DAergic neurons (Fig. 1).

9. Activins are growth factors implicated in
neuroendocrine control and neuronal repair

The activins, members of the transforming growth factor 3
(TGF-f) superfamily (Massague, 1987), are homo- or heterodimeric
proteins. They are composed of 2 BA subunits (activin A), 2 3B sub-
units (activin B) or 1 BA and 1 BB subunit (activin AB). Activins were
originally isolated because of their abilities to stimulate FSH release
from the mammalian pituitary. In goldfish, activin B stimulates
FSH[3 mRNA expression while inhibiting LH3 mRNA expression in
vitro (Yam et al., 1999). Furthermore, the activin binding protein
follistatin was found to have the opposite effect; it inhibits FSH3
while stimulating LHP3 expression in the goldfish pituitary (Yuen
and Ge, 2004). Activin BA, 3B, as well as activin receptor subunits
IBand IIB are also expressed in the goldfish brain (Lau and Ge, 2005).
Activin, once bound to the Type Il receptor, forms a complex along
with the Type I receptor which activates the Smad family of tran-
scription factors (Shi and Massague, 2003). Full-length cDNAs for
Smads?2 and 3 (regulatory, or R-Smads), Smad4 (co-Smad), as well
as Smad7 (an inhibitory, or I-Smad) have recently been cloned in
goldfish (Lau and Ge, 2005). Although the authors focused on these
transcription factors in goldfish pituitary, it is interesting to note
that they are also expressed in the brain. In rat brain, activins and
their receptors are expressed in neurons (Tretter et al., 2000).

In the present analysis, activin BA was stimulated by the
GABAg agonist baclofen but not by the GABA, agonist muscimol
(Martyniuk et al., 2007a,b). What the effect of activins and the role
GABA-mediated increases in activin may have on the fish brain are
a matter of speculation but are likely to be involved in LH release by
enhancing GnRH production in the brain (Martyniuk et al., 2007a,b;
Ge et al., 1992; Gregory and Kaiser, 2004).

The activins are implicated in many processes, including
development, reproduction, behaviour, neuronal stem cell differ-
entiation and neuronal repair (Tretter et al., 2000; Hughes et al.,
1999; Ma et al., 2005; Satoh et al., 2000). Given that GABA is a major
neurotransmitter and is implicated in many of the same functions,
it may be that GABAg receptor mediated stimulation of activin BA
expression is also important for maintenance of neuronal function
in addition to a role in neuroendocrine signaling in the adult brain.

10. Conclusions

Endocrine systems regulate reproduction, development and
growth, and exist for the purpose of the organism to propagate
their genomes. Model systems are essential to the advancement
of biology and the goldfish has featured prominently in numerous
fundamental discoveries concerning neuroendocrine regulation of
reproduction. The central role of DA as the potent inhibitor of LH
release, and GnRH and a multitude of other stimulatory neurohor-
mones has helped to advance the concept of inhibitory-stimulatory
duality of control mechanisms in the brain and pituitary. Part of
the utility of the model resulted from the pioneering work of R.E.
Peter and his brain atlas (Peter and Gill, 1975) and classic elec-
trolytic lesioning studies delineating the brain regions important
for neuroendocrine signalling (Peter et al., 1986). Many reagents
are now available, including recombinant hormones and cytokines
and there are numerous fields employing the goldfish model.
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Recently, we initiated an expressed sequence tag (EST) sequenc-
ing project to address one of the main limitations of the goldfish
model: a lack of gene sequence information. Increasing availability
of ESTs for goldfish, together with the ~40K ESTs available for the
common carp, Cyprinus carpio (Cossins, unpublished sequences and
Gracey et al., 2004) and the recent development of a goldfish bac-
terial artificial chromosome library (Luo et al., 2006) is beginning
to address this limitation. Similar efforts for genes in the gold-
fish immune system are underway (Barreda et al., 2004). We have
also demonstrated the utility of microarray analysis and associ-
ated bioinformatics for research on neuroendocrine signaling. With
these techniques, we have found that multiple genes involved in
reproduction are differentially regulated by various neurotransmit-
ter systems in the brain, and have begun to elucidate the complexity
of the neural pathways involved in reproduction. It will soon be
possible to study the concept of neuroendocrine-immune interac-
tions in fish (Hanington et al., 2006; Barreda et al., 2004; Metz et
al., 2006). Moreover, there are numerous other gut, pituitary and
brain peptide genes being sequenced, and certainly the goldfish
model will continue to contribute significantly to our understand-
ing of neuroendocrine control of growth and feeding (Volkoff et al.,
2005; Matsuda et al., 2008).

Highly complementary resources are available for the com-
mon carp (carpBASE; http://legr.liv.ac.uk), a closely related species.
While zebrafish are without doubt excellent models for develop-
mental biology and toxicology, they remain a challenging organism
for basic physiological studies because of their small size and lack of
pituitary hormone assays. Thus physiological genomic analysis of
reproduction is somewhat limited in zebrafish. Importantly, how-
ever, the vast resources for zebrafish as well as Fugu and medaka
models make it relatively easy to categorize goldfish ESTs using
comparative genomic approaches. Meta-analysis of expression data
from numerous neuropharmacological experiments in goldfish
helps to focus attention on key neuroendocrine systems, for exam-
ple IST (Goodson and Bass, 2000) and activins (Yam et al., 1999),
whose functions in the teleost brain are only partially characterized.
What we have discovered is that hundreds of goldfish ESTs derived
from brain cannot be found in the other fish genomes. The 1415
unidentified ESTs derived from both goldfish and carp that respond
to neuroendocrine manipulations in the goldfish brain may be
derived from the highly divergent untranslated regions of mRNAs
already isolated. Others may be unique sequences from coding
regions that we cannot yet characterize, representing new genes.
They may also represent non-protein coding transcriptional prod-
ucts that participate more widely in biological regulation through
RNA/RNA, RNA/DNA and RNA/protein interactions. Together these
uncharacterized products provide rich biological material for future
analysis of neuroendocrine signaling in the vertebrate brain.
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