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ABSTRACT

The quality of a microarray experiment is measured by sensitivity and specificity which depend on
hybridization efficiency and non-specific cross-hybridization. The length and GC% of probe
sequences are known to strongly affect hybridization and cross-hybridization. However, the joint
effect of both the length and GC% of the probe sequences on microarray signal intensity has not
been systematically assessed. Here I use a set of yeast microarray data with the GC% of probe
sequences varying from 12.5% to 68.75% and with the probe length varying from 27 to 40nt to
simultaneously assess both the effect of probe length and GC% on DNA hybridization. Both probe
length and GC% have significant impact on signal intensity (SI) and a model derived from the data
shows how changes in probe GC% can be compensated by the probe length and why such
compensation did not work in some previous studies. SI increases sigmoidally with the probe GC%
based on a data set where the probe length is constant. Our characterization of the effect of the probe
length and GC% on SI suggests new ways to design microarrays and to normalize microarray data to
reduce error variation.
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INTRODUCTION

All living systems feature three major components: the genome, the transcripts and the
proteins, as products of three essential biological processes: genome replication,

transcription and translation. While the genome is essentially identical in all living cells of a
multicellular organism, the transcripts and the proteins are dynamic features that change over
time. To understand how living systems work, it is important to characterize the dynamic nature
of transcripts and proteins as consequences of gene regulation. Microarray technology [1, 2]
remains one of the most economic high-throughput methods for characterizing transcripts in
living cells.

The quality of a microarray experiment is measured by sensitivity and specificity [3, 4].
Sensitivity is the fraction of probes with signal intensity (SI) above background when the
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target is present. Ideally, specificity should be 100%, i.e., SI is always above background when
the target is present. Specificity is the fraction of probes that have background SI when there is
no target. Ideally, specificity should also be 100%, i.e., all probes should have background SI
when no target is present. How to maximize sensitivity and specificity in microarray experiment
is a hot technical issue in microarray research.

SI is affected by the length [4-7], GC% [3, 8, 9] and concentration [4, 5] of probe and
target sequences, and these factors tend to act synergistically rather than independently [4].
Microarray design mainly involves finding the best combination of the probe length, the
probe GC% and probe concentration that would maximize sensitivity and specificity in
hybridization with target samples. The effect of probe concentration is minimal compared to
that of probe length and probe GC% [5]. I focus only on probe length and probe GC% in this
paper.

That GC content can affect DNA hybridization on solid support has been recognized a
long time ago [10], as the melting temperature increases with GC% with a slope of about 0.41.
However, the effect of GC content of microarray probe sequences on signal intensity has been
noted only recently [3, 8, 9]. The probe GC% has been demonstrated empirically to affect SI in
microarray experiment [8]. The effect remains strong when factors such as nucleotide and
dinucleotide identity have been controlled for [9].

A previous empirical study suggests that increased probe GC% tends to increase SI and
consequently sensitivity, but may decrease specificity [3] due to cross hybridization. However,
the functional relationship between GC% and SI has not been quantified. Also, it is not clear
whether the effect of the probe GC% on SI may be confounded by the probe length which also
affects SI.

The probe length is a dominant factor contributing to SI [4-7]. SI increased exponentially
with the probe length, especially for lowly expressed genes [5]. Unfortunately, the GC% of the
probe is not included in the analysis. The probes of 30mers have an average GC% slightly
lower than the probes of 70mers in the study. In particular, three 30mers are particularly GC-
poor, with GC% equal to 13.33% for two 30mers and 16.66 for one 30mer. In contrast, the
probe with the lowest GC% in the 70mer group is 27.14%. So the relationship between SI and
the probe length might be confounded by the discrepancy in the probe GC% between the two
groups.

An early study [6] showed that increasing probe lengths decreased specificity. This is
expected on theoretical ground. For example, suppose that a probe of length L

p
 is mixed with

N random target sequences of length L
t
 and that hybridization between the probe and the target

requires an exact match of L consecutive bases. Also assume that probes and targets have equal
nucleotide frequencies. These conditions would lead to the expected number of the random
targets that could hybridize with the probe being [11, pp. 4-10]

E = N(L
p
 – L + 1) (L

t
 – L + 1)•0.25L (1)

If N = 109, L
p
 = 25, L

t
 = 1000 and L = 20, then E  5. However, if L

p
 is increased to 100,

then E ≈ 72. Note that E is the expected number of random targets that can hybridize to the



The Effect of Probe Length and GC% on Microarray Signal Intensity: 173

probe. In short, increasing L
p
 has two effects. First, increasing L

p
 will increase the noise by a

linear rate of (L
p
 – L + 1). Second, a probe with a large L

p
 is a wider net for the target sequence

and will consequently increase SI and sensitivity. A probe length of 60 appears to be a good
compromise between sensitivity and specificity [12].

While major array manufacturers typically would make an effort to choose probe sequences
with roughly the same GC%, there are cases where this approach cannot be taken, such as in
the cases of high-density tiling arrays [13-15]. In addition, probe sequences in two-channel
cDNA probe arrays designed for specific purposes [16], such as those targeting exon-intron
junctions or exon-exon junctions [17-19], are often constrained by the target sequences and
cannot be optimized to have similar GC%. It is therefore important to assess the effect of GC%
and sequence length of probes on SI of microarrays.

Here I take advantage of a recently designed cDNA microarray for characterizing dynamics
of intron splicing in the yeast, Saccharomyces cerevisiae [18, 19] to quantify the effect of
probe GC% and probe length on DNA hybridization in microarray experiments. Three probes
were designed for each intron-containing gene, one targeting the exon to characterize the total
mRNA transcript, one targeting the intron to characterize the unspliced transcript and one
targeting the exon-exon junction to characterize the spliced product. The probe sequences
targeting the exon and intron are all 32 nt long and the program ArrayoligoSelector (http://
arrayoligosel.sourceforge.net) was used to minimize the difference in GC% by choosing the
target GC content of 35%. Because yeast intron sequences are both GC-poor and short relative
to exon regions, it is practically difficult to design intron probes with GC content higher than
35%. So a target GC content of 35% was chosen and exon probes were chosen to have GC%
matching that of intron probes. However, many probe sequences still vary widely in GC%,
from 18.75% to 62.50%. This data set, including exon-targeting and intron targeting probes,
will be referred to hereafter as Non-Junction Data Set. The data set will be used for characterizing
the relationship between SI and probe GC%.

For probe sequences targeting the exon-exon junction, there is little freedom for minimizing
the differences in GC% because the probe sequence is fixed by the 3’-end of the upstream
exon and the 5’-end of the downstream exon. For this reason, the GC% of these probes vary
widely from12.5% to 68.75%. This GC% range implies a melting temperature (T

m
) difference

of almost 13°C, given that T
m
 increases with GC% with a slope of 0.41 [10]. In order to optimize

the probes so that the melting temperature will be roughly the same, probes with low GC% are
designed to be longer than those with high GC% (Figure 1). Also, the binding energy for the 3'-
end of the upstream exon and that for the 5'-end of the downstream exon were designed to be
roughly the same [19]. This data set is to assess (1) whether lengthening the probe sequences is
sufficient to offset the effect of GC% on DNA hybridization on microarrays and (2) whether
the probe length and probe GC% affect signal intensity independently or synergistically (i.e.,
the effect of the probe length on signal intensity depends on the probe GC and vice versa). This
data set will be referred hereafter as the Junction Data Set, and will be used to characterize the
relationship between SI as dependent variable and the probe length and GC% as the two
independent variables.
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MATERIALS AND METHODS

Microarray data for yeast introns (GEO record GSE7419, supplementary file GSE7419_RAW.tar
of 259.8 Mb) were downloaded from http://www.ncbi.nlm.nih.gov/geo and uncompressed,
resulting in one GenePix Array List (.GAL) file and 297 GenePix result (.GPR) files. Each
microarray has a total of 16 blocks arranged in a 4´4 configuration. Each block contains 24×24
probe cells. So the total number of probe cells is 9216 (=4×4×24×24). The probes includes
those for characterizing 232 yeast introns as well as others used for controls and normalization
purposes [18, 19]. Three different probes were designed for each of the 232 yeast introns, with
one targeting the exon to characterize the total mRNA transcript, one targeting the intron to
characterize the unspliced transcript and one targeting the exon-exon junction to characterize
the spliced product. The sequence length of probes targeting the exon-exon junctions differs
with GC% (Figure 1). All other probes are 32 nt long. The probe sequences are in the platform
GPL5052, retrieved at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL5052.

Characterizing Relationship between Signal Intensity (SI) and GC%

In the original experiments [18, 19], the two-channel microarray data result from competitive
hybridization between the wild type yeast and each of several mutants. Thus, SI values from
both channels are indices of intron abundance, with the average correlation between the red
and the green signal intensity being 0.92 for the 297 microarrays.

Figure 1: Relationship between GC% and Sequence Length for Microarray Probes Targeting the Exon-exon Junctions

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
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The median foreground and background is used throughout the analysis as they are more
robust against microarray surface irregularities than mean intensities. The background is
corrected as follows. First, a two-dimensional surface fitting of the background intensity is
performed (Figure 2), using two-dimensional loess [20-22] fitting with the smoothing parameter
equal to 0.01 and five times of iterative reweighting to minimize the effect of outliers to achieve
a robust fit. The SAS procedure LOESS was used to perform the robust local regression. The
fitted background values are then subtracted from the foreground signal intensity to generate
the background-corrected signal intensity. Unless otherwise specified, signal intensity (SI)
refers to background-corrected SI.

Figure 2: Two-dimensional Robust Local Fitting of Background Intensity from the Red Channel (Wave Length = 635
nm) of the Microarray Data file GSM179172.gpr, with the Smoothing Parameter Equal to 0.01 and the Number
of Iterative Reweighting Equal to 5

Two separate data sets were used, one containing only microarray data for probes targeting
exon-exon junctions (Junction Data set), and the other containing data for all the other probes
(Non-junction Data set). The Non-junction Data are used to characterize the general relationship
between SI and CG%, whereas the Junction Data are for characterizing the joint effect of the
probe length and the probe GC%, as well as for checking whether the effect of GC% on SI is
offset by the associated change in the probe length.

The probe sequences were read into DAMBE [23, 24] and GC% computed. DAMBE was
also used to extract SI for intron-targeting, exon-targeting and exon-exon junction-targeting
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probes. A nonlinear regression was fitted with the NLIN procedure in SAS [25] and further
refined by the AMOEBA algorithm for optimization [26] implemented in DAMBE.

RESULTS

Signal Intensity (SI) Increases with Probe Length and GC%

For microarray data in the Junction Data Set (i.e., probes of variable lengths targeting the
exon-exon junctions), probes with high GC% are shorter and probes with low GC% longer
(Figure 1), with the purpose of all probes having roughly the same melting temperature. I used
this data set to evaluate the joint effect of probe length and GC% on SI. The limitation of the
data is discussed later.

Mean SI changes with both the probe length (L
p
) and the probe GC% (Figure 3, which

plots the mean SI for different combinations of L
p
 and GC%). Two interesting patterns are

worth highlighting. First, SI increases with probe GC%, and those probe sequences with less
than 30% of GC essentially do not hybridize with the targets. Second, SI may appear to decrease
with probe length (L

p
), i.e., those probes with L

p
 greater than 35 essentially do not hybridize

whereas those short probes appear to hybridize well (Figure 3). However, this interpretation is
wrong because L

p
 is correlated with probe GC%. For probes with GC% sufficiently high to

hybridize, SI tend to increase with L
p
. This is better characterized by modeling the effect of

both L
p
 and probe GC% (GC) on SI by fitting the follow linear model:

Figure 3: Visualizing the Effect of Probe Length (L
p
) and GC% on Signal Intensity (SI)
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sI = a
0
 + a

1
Lp + a

2
GC + a

3
L

p
•GC (2)

where the last term is for testing the interactions between L
p
 and GC, i.e., whether the effect of

L
p
 and GC% on SI is multiplicative instead of additive. Note that, although the relationship

between SI and the two independent variables (L
p
 and GC) may be nonlinear, the linear model

should be sufficient for this particular data set because ∆GC for each given L
p
 and ∆L

p
 for each

given GC% are both small (Figures 1 and 3). The model accounts for only 6.04% of the total
variation in SI but is highly significant (F = 32.3195, numerator DF = 3, denominator DF =
1508, p < 0.00001). The slope is positive for both L

p
 and GC%, i.e., SI increases with both L

p

and GC%. The interaction is not significant (p = 0.9173). The final fitted model without the
interaction term is

SI = –48892.2 + 997.3053L
p
 + 591.451GC (3)

The slopes for both L
p
 and GC% are highly significant, with p equal to 0.0037 for L

p
 and

< 0.00001 for GC%. To derive an empirical formula for compensating the effect of decreasing
probe GC on SI by increasing L

p
, we keep SI constant and solve for L

p
:

L
p
 = (0.001002701981 SI + 49.02430580) – (0.5930490894 GC = A–0.5930490894 GC

where A is a constant. Eq. implies that, for probe GC% to decrease from 55% to 15%, L
p
 needs

to be increased by 24. In other words, if L
p
 = 27 for probe GC% = 55%, then L

p
 should be equal

to 27 + 24 = 51 to compensate for the effect of probe GC% on SI. In the studies by Pleiss et al.
[18, 19], L

p
 is lengthened by only about 12 nucleotides on average when the probe GC%

changes from 55% to 15% (Figure 1). This compensation by L
p
 is insufficient and may have

contributed to the lack of hybridization when probe GC% is lower than 30% (Figure 3).

One may argue that the lack of hybridization for probes with GC% smaller than 30% is not
due to the low probe GC% but because of the lack of target sequences, i.e., those low-GC
probes may happen to correspond to lowly expressed genes with few transcripts present in the
sample. This can explain a few data points. For example, the yeast gene YCR097W has the
probe GC% equal to 12.5%, and its SI is low not only for the probe targeting the exon-exon
junction (average SI equal to 544.667) of this gene, but also low for the probes targeting the
exon and the intron (average SI equal to 632.167 and 268.833, respectively, for the exon and
intron). All these SI values are not significantly different from the background, suggesting that
the gene is either not transcribed or lowly transcribed. The low SI for the gene is therefore
better attributed to the lack of targets than to the low probe GC%. The low SI for gene YDR129C
(with GC% = 21.6%) can be similarly explained without invoking low probe GC%.

This explanation of low SI as a consequence of little transcriptional activity, however,
cannot explain the observed low average SI values for a number of other probes with a low
GC%. For example, the exon-targeting probes for genes YOR182C (RPS30B), YDL061C
(RPS29B) and YHR021C (RPS27B) have extremely high average SI values (55164.17,
59634.17, and 57423.17, respectively), i.e., they are highly expressed genes. This is not
surprising because all three are ribosomal proteins in the small (40S) ribosomal subunit and
known to be highly expressed. Furthermore, the intron-targeting probes for these two genes
have low average SI values (351.67 for YOR182C, 970.17 for YDL061C, and 507 for
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YHR021C), suggesting that these highly expressed mRNAs are efficiently spliced with few
mRNA in unspliced form. This is again not surprising because highly transcribed ribosomal
protein-coding genes have the necessity, and are known, to have high splicing efficiency. These
observations jointly suggest that most of the mRNA species for these three highly expressed
genes should be in the spliced form featuring the exon-exon junction, i.e., we should expect to
see high SI values for the probes targeting the exon-exon junction for these three genes.
Surprisingly, the SI values for the probes targeting the exon-exon junction for these three
genes are very small, being 395.333 for YOR182C, 472.000 for YDL061C, and 233.67 for
YHR021C which are hardly above the background. This strongly suggests the possibility that
the low average SI values for the exon-exon junction of these three genes is due to poor
hybridization caused by low GC% in the probe (21.6% for YOR182C, 22.2% for YDL061C
and 23.1% for YHR021C). Given L

p
 = 27 for the probe GC% = 55%, we should have L

p
 = 47

for GC% = 21.6, L
p
 = 46 for GC% = 22.2%, and L

p
 = 46 for GC% = 23.1% according to Eq. .

However, the maximum L
p
 in the studies [18, 19] is only 39 nt which is insufficient to compensate

for the low probe GC%.

With the significant effect of probe GC% and L
p
 on SI, it seems obvious that SI should be

adjusted by CG% and L
p
. The general approach should be to fit SI as a function of GC% and

L
p
, i.e., SI = F(GC, L

p
) and then take the residual as the new SI. However, one should not use

the linear model in Eq. because it is appropriate only with small variation in GC% and Lp, i.e.,
when a short segment of a curve can be sufficiently approximated by a straight line. Instead,
one should use either the parametric 2-D model fitting or the local robust regression such as
loess [20-22].

Non-linear Relationship between SI and Probe GC% with Fixed Lp

For microarray data in the Non-Junction Data Set (i.e., with probes targeting the exons and
introns but excluding the probes of variable lengths targeting the exon-exon junctions), L

p
 is

always 32 nucleotides, but probe GC% varies widely, from 18.75% to 62.50%. This data set is
used here for characterizing the relationship between SI and probe GC%.

Mean SI, computed from probes with the same GC%, increases with GC% of probe
sequences (Figure 4). The relationship is statistically highly significant (p < 0.0001), by fitting
either a linear, a non-linear model to the data, or by a nonparametric Spearman correlation.

I consider two nonlinear models for fitting the sigmoid relationship in Figure 4. The first,
designated NLIN4 (for a non-linear model with four parameters α, β, δ, and γ) in Eq. (5), is
perhaps the most general one. I also consider a reduced non-linear model with three parameters
(α, β, and δ), designated NLIN3 in Eq. (5). These two models are compared against the linear
model with only two parameters (intercept and slope).

- ( - )

- ( - )

4 :

3:
1

GC

GC

NLIN SI
e

NLIN SI
e

β δ

β δ

α=
γ +

α=
+

(5)
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I used the model selection criteria AICc and AICu [27] to choose the best model. Due to
the relationship between least-squares (LS) estimation and maximum likelihood (ML) theory
[27, p. 110], we have

2
2

ln
ln( )

ln[ ( , | )]
2 2

RSS
n

n n
L p data

 
  σσ = − = − (6)

where the left of the equation is the log-likelihood (hereafter referred to as lnL), σ2 is the
variance of the residuals, RSS is the residual sum of squares, n is the number of data points,
and RSS/n is the likelihood estimate of σ2. I will designate RSS

linear
 as RSS for the linear

regression and RSS
NLIN4

and RSS
NLIN3

 for the two non-linear models in Eq. (5). Fitting the 7704
pairs (SI, GC%) of data results in RSS

NLIN4
= RSS

NLIN3
= 26996393152.7967 (with α =

25887.0355, γ = 1.3170, β = 0.4689 and δ = 37.1103 for NLIN4 and α = 19655.9683, β =
0.4689, and δ = 36.5231 for NLIN3) and RSS

linear
 = 89616295700 from which we obtain lnL

NLIN4

= lnL
NLIN3

 = -58047.6144 and lnL
linear

 = -62669.3746. The difference in lnL, i.e., the likelihood
ratio, is 4621.76. We note that the linear model with two parameters (intercept and slope) and
the nonlinear models as specified in Eq. are not nested so that a conventional likelihood ratio

Figure 4: SI Increases with GC% for Microarray Data from Probes Targeting Exon-exon Junctions in the GSM179172.gpr
File. The Blue and Red Bubbles are, Respectively, the Observed Data and the Expected Value. The Bubble Size
Indicates the Number of Probes with the Same GC%
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test cannot be used. However, we can use information theoretic indices [27, 28] to choose
which of the model is more appropriate for the data. Two information-theoretic indices that
perform better than either the conventional AIC [29, 30] or BIC [31] are AICc and AICu
defined as [32, pp. 22-32]:

ln
2

ln
2

RSS n p
AICc

n n p

RSS n p
AICu

n p n p

+ = +   − −

  += +  −  − −
(7)

where RSS is RSS
linear

 for the linear model and RSS
NLIN4

and RSS
NLIN3

 for the nonlinear models
NLIN4 and NLIN3, respectively, n is the number of observations (i.e., 7704) and p is the
number of parameters (2 for the linear model, 4 for NLIN4 and 3 for NLIN3). The smaller the
indices, the better the model is. The difference between AICc and AICu is the estimation of
variance. AICc uses the maximum likelihood estimate RSS/n, whereas AICu uses the unbiased
estimate RSS/(n – p). As n (= 7704) is far greater than p, the difference between AICc and
AICu is minimal.

Both AICc and AICu (Table 1) identified NLIN3 as the best model. This is true not only
just for the data in file GSM17972.gpr, but also for other 297 files in the set of microarray
experiments. This suggests that the sigmoidal relationship is general and can be used to correct
the effect of probe GC% in microarray experiments. I should add that the non-linear relationship
characterized by the equation is purely descriptive and does not imply any physico-chemical
process underlying the hybridization process.

Table 1
Computational Details for Information-theoretic Indices AICc and AICu

Linear NLIN4 NLIN3

n(1) 7704 7704 7704
n

p
(2) 2 4 3

RSS(3) 89616295700 26996393153 26996393153
RSS/n 11632437.137 3504204.719 3504204.719
RSS/(n-n

p
) 11635457.764 3506025.085 3505569.816

(n+n
p
)/(n-n

p
-2) 1.001 1.001 1.001

AICc 17.270 16.071 16.071
AICu 17.270 16.071 16.071

(1) n – number of probes.
(2) n

p
 – number of parameters in the model.

(3) Residual sum of squares (squared deviations of observed SI from predicted SI).

DISCUSSION

Our characterization of the relationship between SI and the two independent variables (L
p
 and

probe GC%) has several implications. First, for microarray experiments with limited variation
in L

p
 and GC%, a linear relationship can be used either to find L

p
 to compensate for the effect
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of varying GC% on SI or to correct the systematic bias introduced to SI by varying L
p
 and

GC%. Second, for microarray data with a large variation in the probe GC%, a sigmoidal
relationship should be fitted to eliminate the systematic bias introduced to SI by differences in
the probe GC%. This nonlinear relationship, characterized by NLIN3 in Eq. can be used to
guide the design of the correction protocol. Third, the traditional approach of equalizing free
energy to compensate the effect of the difference in the probe GC% by changing the probe
length appears not a good approach, because the probes should be lengthened substantially
more to compensate for the GC% effect. These results are particularly relevant to high-density
tiling arrays [13-15] where one has little freedom in optimize probe GC%.

Our results help to understand the lack of hybridization for probes with GC% lower than
30% in previous studies [18, 19]. This is significant for microarray experiments on GC-poor
genomes. For example, the genome of Mycoplasma genitalium and M. pulmonis have genomic
GC% lower than 30% [33]. For such genomes, the 25mers in a conventional Affymetrix probe
array will almost certainly fail to achieve consistent hybridization.

In presenting the results, I have assumed that cross hybridization is minimal. A previous
study suggests that such an assumption is reasonable when probe GC% is not higher than 55%
[3]. There are a few probes with GC% higher than 55% in the data used in this paper, but they
are highly unique and have little sequence similarity to other sequences. Another assumption is
the linear relationship in Eq. (3) which may not have a solid theoretical basis. However, because
∆GC% is small for any given L

p
, the linear characterization in Eq. (3) is sufficient for the data,

and adding any non-linear terms does not improve the fit when judged either by adjusted R2,
Akaike information content or likelihood ratio tests for model selection [27].

There are three shortcomings in this current study, both being associated with the limitation
of the data. First, the original microarray experiment was not designed specifically for evaluating
the effect of the probe length and the probe GC% on SI. For this reason we do not have long
probes with high GC% or short probes with low GC%. This precluded the simultaneous
characterization of potential nonlinear effect of both the probe length and the probe GC% on
SI. Also, a two-channel microarray is typically designed without aiming for identical amount
of probes in each microarray spot. This implies substantial inherent noise in the data.

The second limitation of the paper is that it does not consider the position of G and C in the
probe. The melting and annealing of DNA depend not only on GC%, but also on the distribution
of G and C along the sequence. Suppose that we have two DNA sequences (designated DNA1
and DNA2, respectively) of the same length and the same nucleotide composition, but DNA1
has GC base pairs located at the two terminals whereas DNA2 has GC base pairs located in the
middle of the sequence. Because melting occurs much more likely at the two terminals than in
the middle [34], especially when the terminals are AT-rich , we should expect DNA1 to be
more stable than DNA2. However, the data sets I analyzed contain few probe sequences with
such extreme nucleotide distributions, and a specifically designed experiment would be needed
to evaluate the effect of the spatial distribution of GC base pairs on DNA hybridization.

In short, DNA hybridization is strongly affected by the probe length and the probe GC%,
and the relationship between the signal intensity and the probe GC% can be well characterized
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by a three-parameter sigmoidal function. Lengthening the probe sequence can at least partially
compensate the effect of low GC% on hybridization, but such compensation may not be achieved
by equaling probe melting temperature or free energy in binding.

ACKNOWLEDGEMENTS

This study is supported by NSERC’s Discovery, and Strategic Grants. I thank J. A. Pleiss and G. Whitworth for their
lengthy and patient explanation to me on the design of their microarray chip, the details of their experiment, and the
interpretation of their microarray data. E. Prankeviciene provided helpful comments, and two anonymous referees
checked for errors and provided helpful suggestions.

REFERENCES

[1] M. Schena, “Genome Analysis with Gene Expression Microarrays,” Bioessays, 18, 427-31, 1996.

[2] M. Schena, Microarray Analysis. New York: Wiley-Liss, 2003.

[3] K. Kucho, H. Yoneda, M. Harada, and M. Ishiura, “Determinants of Sensitivity and Specificity in Spotted
DNA Microarrays with Unmodified Oligonucleotides,” Genes Genet Syst, 79, 189-97, 2004.

[4] A. Jayaraman, C. K. Hall, and J. Genzer, “Computer Simulation Study of Probe-target Hybridization in Model
DNA Microarrays: Effect of Probe Surface Density and Target Concentration,” J. Chem. Phys., 127, 144-912,
2007.

[5] L. Ramdas, D. Cogdell, J. Jia, E. Taylor, V. Dunmire, L. Hu, S. Hamilton, and W. Zhang, “Improving Signal
Intensities for Genes with Low-expression on Oligonucleotide Microarrays,” BMC Genomics, 5, 35, 2004.

[6] A. Relogio, C. Schwager, A. Richter, W. Ansorge, and J. Valcarcel, “Optimization of Oligonucleotide-based
DNA Microarrays,” Nucl. Acids Res., 30, e51- 2002.

[7] C. C. Chou, C. H. Chen, T. T. Lee, and K. Peck, “Optimization of Probe Length and the Number of Probes per
gene for Optimal Microarray Analysis of Gene Expression,” Nucl. Acids Res., 32, e99- 2004.

[8] H. C. Yang, Y. J. Liang, M. C. Huang, L. H. Li, C. H. Lin, J. Y. Wu, Y. T. Chen, and C. S. J. Fann, “A Genome-
wide Study of Preferential Amplification/hybridization in Microarray-based Pooled DNA Experiments,” Nucl.
Acids Res., gkl446 2006.

[9] Y. Chen, C. C. Chou, X. Lu, E. Slate, K. Peck, W. Xu, E. Voit, and J. Almeida, “A Multivariate Prediction
Model for Microarray Cross-hybridization,” BMC Bioinformatics, 7, 101 2006.

[10] J. Meinkoth and G. Wahl, “Hybridization of Nucleic Acids Immobilized on Solid Supports,” Anal Biochem,
138, 267-84 1984.

[11] X. Xia, Bioinformatics and the Cell: Modern Computational Approaches in Genomics, Proteomics and
Transcriptomics. New York: Springer US, 2007.

[12] D. L. Leiske, A. Karimpour-Fard, P. S. Hume, B. D. Fairbanks, and R. T. Gill, “A Comparison of Alternative
60-mer probe Designs in an in-situ Synthesized Oligonucleotide Microarray,” BMC Genomics, 7, 72 2006.

[13] J. Yazaki, B. D. Gregory, and J. R. Ecker, “Mapping the Genome Landscape using Tiling Array Technology,”
Curr Opin Plant Biol., 10, 534-42 2007.

[14] X. S. Liu, “Getting Started in Tiling Microarray Analysis,” PLoS Comput Biol., 3, 1842-4 2007.

[15] T. C. Mockler, S. Chan, A. Sundaresan, H. Chen, S. E. Jacobsen, and J. R. Ecker, “Applications of DNA Tiling
Arrays for Whole-genome Analysis,” Genomics, 85, 1-15 2005.

[16] K. Srinivasan, L. Shiue, J. D. Hayes, R. Centers, S. Fitzwater, R. Loewen, L. R. Edmondson, J. Bryant, M.
Smith, C. Rommelfanger, V. Welch, T. A. Clark, C. W. Sugnet, K. J. Howe, Y. Mandel-Gutfreund, and J. M.
Ares, “Detection and Measurement of Alternative Splicing using Splicing-sensitive Microarrays,” Methods,
37, 345 2005.



The Effect of Probe Length and GC% on Microarray Signal Intensity: 183

[17] T. A. Clark, C. W. Sugnet, and M. Ares, Jr., “Genomewide Analysis of mRNA Processing in Yeast using
Splicing-specific Microarrays,” Science, 296, 907-10 2002.

[18] J. A. Pleiss, G. B. Whitworth, M. Bergkessel, and C. Guthrie, “Rapid, Transcript-specific Changes in Splicing
in Response to Environmental Stress,” Mol Cell, 27, 928-37 2007.

[19] J. A. Pleiss, G. B. Whitworth, M. Bergkessel, and C. Guthrie, “Transcript Specificity in Yeast pre-mRNA
Splicing Revealed by Mutations in Core Spliceosomal Components,” PLoS Biol, 5, e90 2007.

[20] W. S. Cleveland and S. J. Devlin, “Locally-Weighted Fitting: An Approach to Fitting Analysis by Local
Fitting.,” Journal of the American Statistical Association, 83, 596-610 1988.

[21] W. S. Cleveland and E. Grosse, “Computational Methods for Local Fitting.,” Statistics and Computing, 1, 47-
62 1991.

[22] C. Loader, Local Regression and Likelihood. New York: Springer, 1999.

[23] X. Xia and Z. Xie, “DAMBE: Software Package for Data Analysis in Molecular Biology and Evolution,”
Journal of Heredity, 92, 371-373 2001.

[24] X. Xia, Data Analysis in Molecular Biology and Evolution. Boston: Kluwer Academic Publishers, 2001.

[25] SAS Institute Inc., SAS/STAT User’s guide. Version 6, Volume 2., Vol. 2, 4th ed. Cary, NC: SAS Institute Inc.,
1989.

[26] W. H. Press, S. A. Teukolsky, W. T. Tetterling, and B. P. Flannery, Numerical Recipes in C: the Art of Scientifi
Computing., 2nd ed. Cambridge: Cambridge University Press, 1992.

[27] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: A Practical Information-
Theoretic Approach. New York, NY: Springer, 2002.

[28] X. Xia, “Information-theoretic Indices and an Approximate Significance Test for Testing the Molecular Clock
Hypothesis with Genetic Distances,” Molecular Phylogenetics and Evolution, 52, 665-676 2009.

[29] H. Akaike, “Information Theory and an Extension of Maximum Likelihood Principle,” in Second International
Symposium on Information Theory, B. N. Petrov and F. Csaki, Eds. Budapest: Akademiai Kiado, 1973, pp.
267-281.

[30] H. Akaike, “A New Look at the Statistical Model Identification,” IEEE. Trans. Autom Contr. AC, 19, 716-723
1974.

[31] G. Schwarz, “Estimating the Dimension of a Model,” Annals of Statistics, 6, 461-464 1978.

[32] A. D. R. McQuarrie and C. L. Tsai, Regression and Time Series Model Selection.: World Scientific, 1998.

[33] X. Xia, “DNA Methylation and Mycoplasma Genomes,” Journal of Molecular Evolution, 57, S21-S28 2003.

[34] K. Y. Wong and B. M. Pettitt, “The Pathway of Oligomeric DNA Melting Investigated by Molecular Dynamics
Simulations,” Biophysical Journal, 95, 5618 2008.


