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a b s t r a c t

Distance-based phylogenetic methods are widely used in biomedical research. However, there has been
little development of rigorous statistical methods and software for dating speciation and gene duplication
events by using evolutionary distances. Here we present a simple, fast and accurate dating method based
on the least-squares (LS) method that has already been widely used in molecular phylogenetic recon-
struction. Dating methods with a global clock or two different local clocks are presented. Single or multi-
ple fossil calibration points can be used, and multiple data sets can be integrated in a combined analysis.
Variation of the estimated divergence time is estimated by resampling methods such as bootstrapping or
jackknifing. Application of the method to dating the divergence time among seven ape species or among
35 mammalian species including major mammalian orders shows that the estimated divergence time
with the LS criterion is nearly identical to those obtained by the likelihood method or Bayesian inference.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction a linearized tree and a global clock (Takezaki et al., 1995) has been
Distance-based phylogenetic methods, especially those based
on the least-squares criterion, are widely used in biomedical re-
search and featured in major textbooks on molecular phylogenet-
ics (Felsenstein, 2004; Li, 1997; Nei and Kumar, 2000; Yang,
2006). The least-square method for phylogenetic reconstruction
is generally consistent when the distance is estimated properly
(Felsenstein, 2004; Gascuel and Steel, 2006; Nei and Kumar,
2000). However, even when the distance is over- or under-
estimated, the resulting bias is generally quite small (Xia, 2006).

The popularity of the distance-based methods arises not only
from their speed and performance, but also from their applicability
to non-sequence data (Wayne et al., 1991). However, although the
molecular clock concept was proposed on the basis of evolutionary
distances (Zuckerkandl and Pauling, 1965), there has been little
development of rigorous statistical methods and software for dat-
ing speciation and gene duplication events by using evolutionary
distances ever since Chakraborty’s demonstration (1977) that
UPGMA gives least-squares estimates of branch lengths when a
correct tree topology is given. While the method for dating with
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proposed, the method has not been well developed for dating.
Here we present a simple, fast and accurate dating method

based on the least-squares (LS) criterion. Dating methods with a
global clock or two different local clocks are numerically illus-
trated. Single or multiple fossil calibration points can be used,
and multiple data sets can be integrated in a combined analysis.
Variation of the estimated divergence time is estimated by resam-
pling methods such as bootstrapping or jackknifing.

The accuracy of the method is illustrated by applying it to dat-
ing with two datasets, one with seven great ape species (Rannala
and Yang, 2007) and the other with 35 mammalian species includ-
ing major mammalian lineages (Yang and Yoder, 2003). While the
LS method has been used widely in molecular phylogenetic recon-
struction (Bryant and Wadell, 1998; Bulmer, 1991; Cavalli-Sforza
and Edwards, 1967; Gascuel, 2000; Rzhetsky and Nei, 1992), it
has not been developed well for dating. We will first detail the ap-
proach involving a single gene with one or more calibration points,
and with global and two versions of local clocks. This is followed by
approaches for dating with multiple genes and estimating the var-
iation of the divergence time by resampling methods such as boot-
strapping and jackknifing (Felsenstein, 2004, pp. 335–363).
2. Development of the LS-Based method for dating

The statistical framework of the least-square dating method has
been presented independently in matrix form twice before
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(Chakraborty, 1977; Drummond and Rodrigo, 2000). Here we
illustrate the mathematical rationale as well as the extensions
including multiple calibration points, two versions of local clocks
and the computation of confidence limits by resampling methods.
The method is implemented in DAMBE (Xia, 2001; Xia and Xie,
2001) and we include an appendix on how to use DAMBE to
perform the least-square dating.

2.1. Dating with one calibration point

Given the evolutionary distances dij and the topology in Fig. 1,
with the time to the root known as T1, we need to estimate t2, t3

and r (the substitution rate). Assuming a global clock, we minimize
the following residual sum of squares (RSS):

RSS ¼ ðd12 � 2rt3Þ2 þ ðd13 � 2rt2Þ2 þ ðd23 � 2rt2Þ2 þ � � � þ ðd34 � 2rT1Þ2

ð1Þ

Equating the partial derivative of RSS with respect to r, t2 and t3

to zero and solving the three resulting simultaneous equations, we
have

r ¼ d14 þ d24 þ d34

6T1

t2 ¼
3ðd13 þ d23ÞT1

2ðd14 þ d24 þ d34Þ
¼ d13 þ d23

4r

t3 ¼
3d12T1

d14 þ d24 þ d34
¼ d12

2r

ð2Þ

In general, when there is only one calibration point (T) for an
internal node, then r is expressed as

r ¼
Pn

i¼1

Pm
j¼1dij

2nmT
ð3Þ

where n is the number of children in one descendent clade of the
node with calibration time T, m is the number of children in the
other descendent clade of the node, and dij is the evolutionary dis-
tance from ith leaf in one descendent clade to jth leaf in the other
descendent clade. In the four OTU case with T1 known (.1), n = 1
(OTU 4) and m = 3 (OTUs 1, 2 and 3), and dij values are d14, d24,
and d34.

2.2. Dating with multiple calibration points

With multiple calibration points, the method will be essentially
the same except that we have fewer parameters to estimate. For
t3

t2

T1

OTU4

OTU2

OTU1

OTU3

(a)      OTU1 OTU2 OTU3

OTU2        4

OTU3        7         9

OTU4      11       13       12

(b)

Fig. 1. Rooted tree with four OTUs (numbered 1–4) for illustrating the distance-
based least-squares method for dating speciation events. T1 is known and used to
calibrate the molecular clock, and t2 and t3, as well as the substitution rate r, are to
be estimated.
example, if both T1 and T3 are known, then we only need to esti-
mate r and t2, which are

r ¼ T3d12 þ T1d14 þ T1d24 þ T1d34

2ðT2
3 þ 3T2

1Þ

t2 ¼
ðd13 þ d23ÞðT2

3 þ 3T2
1Þ

2ðT3d12 þ T1d14 þ T1d24 þ T1d34Þ
¼ d13 þ d23

4r

ð4Þ

When Nc calibration points are available, then the LS estimate of
r is

r ¼
PNc

k¼1Tk
Pnk

i¼1

Pmk
j¼1dijk

2
PNc

k¼1nkmkT2
k

ð5Þ

For example, with the tree in Fig. 1, but with both T1 and T3

known, then r is

r ¼ T1ðd14 þ d24 þ d34Þ þ T3d12

2ð3T2
1 þ T2

3Þ
ð6Þ

The method above with multiple calibration points provides the
flexibility for the user to further optimize the time estimates. This
is done with three steps. The first is to construct a tree with an im-
posed clock and the LS criterion, without reference to the calibra-
tion time. This results in a set of internal nodes with estimated
path lengths (D) to descendent leaves. The second step is to mini-
mize the following residual sum of squares (RSS) after constructing
a tree with an imposed clock:

RSS ¼
XNc

i¼1

ðDi � rTiÞ2 ð7Þ

where Nc is the number of nodes having calibration time T1,
T2, . . . , TNc and Di is the distance from the node with calibration time
Ti to the tip, i.e., the path length from the node with calibration time
Ti to a descendent leaf (note that the node has equal path length to
any of its descendent leaves when a global clock is assumed). Solv-
ing for r leads to

r ¼
PNc

i¼1DiTiPNc
i¼1T2

i

ð8Þ

The third, and final, step is to rescale all Di values by r, i.e., con-
verting Di to divergence time. This rescaling includes the nodes
with calibration time Ti. Note that r is an unbiased estimate the
true evolutionary rate (c) only when Ti is an unbiased estimate of
the true divergence time si and Di is an unbiased estimate of csi.
While Di could arguably be an unbiased estimate of csi for molec-
ular sequence data when the substitution model is correct, Ti is
typically an underestimate of si, i.e., Ti = si � efossil.i, where efossil is
the bias in the fossil date. This implies that the estimated r is typ-
ically an overestimate of c, with the bias (designated by hfossil)
being

hfossil ¼
c� r

c
¼ �

PNc
i¼1efossil:iTiPNc

i¼1T2
i

ð9Þ

When Di is also uncertain, e.g., due to limited data or due to sub-
stitution saturation in molecular sequences (which typically leads
to Di underestimating csi), we have Di = csi � edata.i, and the bias in
the estimated r, designated by hfossil+data, becomes

hfossilþdata ¼
c� r

c
¼
PNc

i¼1edata:iTi � c
PNc

i¼1efossil:iTi

c
PNc

i¼1T2
i

ð10Þ

Eq. (10) shows clearly that the estimated r (as well as the esti-
mated divergence time) contains two sources of uncertainty, one
due to efossil and one due to edata. These two sources of uncertainty
have not been distinguished in published papers on dating. It is
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important to keep in mind that, while unlimited amount of good
sequence data for estimating Di can reduce edata to 0, no amount
of sequence data can reduce efossil.

2.3. Dating with multiple genes with one or more calibration points

The method can be easily extended to perform a combined
analysis with multiple distance matrices, e.g., when there are
two or more genes, when each distance is obtained from each of
the three codon positions in a protein-coding gene, or when one
has one distance matrix from sequence data and another from
DNA hybridization data. With two genes A and B and two corre-
sponding distance matrices whose individual elements are repre-
sented by dA.ij and dB.ij, respectively, we can perform a combined
analysis to estimate jointly t2, t3, rA and rB (where rA and rB are
the substitution rate for genes A and B, respectively) in two steps.
First, we obtain k = rB/rA by using a simple linear regression with
the regression model dB = k � dA (i.e., forcing the intercept to 0). Sec-
ond, we re-write Eq. (1) as follows:

RSS1 ¼ ðdA:12 � 2rAt3Þ2 þ ðdA:13 � 2rAt2Þ2 þ � � � þ ðdA:34 � 2rAT1Þ2

RSS2 ¼ ðdB:12 � 2krAt3Þ2 þ ðdB:13 � 2krAt2Þ2 þ � � � þ ðdB:34 � 2krAT1Þ2

RSS ¼ RSS1 þ RSS2

ð11Þ

Now rA, t2 and t3 can be estimated just as before, and rB can be
estimated as k � rA. With the topology in Fig. 1, the LS solutions for
the unknowns are

rA ¼
C

6T1ð1þ k2Þ

t2 ¼
3ðdA:13 þ dA:23 þ kdB:13 þ kdB:23ÞT1

2C

t3 ¼
3ðdA:12 þ kdB:12ÞT1

C
C ¼ dA:14 þ dA:24 þ dA:34 þ kdB:14 þ kdB:24 þ kdB:34

ð12Þ

If the two genes evolve at the same rate so that dA.ij = dA.ij and
k = 1, then rA, t2 and t3 are reduced to the same expressions as those
in Eq. (2).

One potential problem with this approach is that, if k� 1 (i.e.,
when gene B evolves much faster than gene A), the estimation will
depend on dB.ij much more than dA.ij. Similarly, if k� 1, the estima-
tion will depend on dA.ij much more than dB.ij. For example, the
third codon position evolves much faster than codon positions 1
and 2. Applying Eq. (12) will result in estimates dominated by
the distance matrix from the third codon position.

An alternative approach is to first scale RSS2 in Eq. (11) by divid-
ing values within each parenthesis in RSS2 by k, so Eq. (11)
becomes

RSS1 ¼ ðdA:12 � 2rt3Þ2 þ ðdA:13 � 2rt2Þ2 þ � � � þ ðdA:34 � 2rT1Þ2

RSS2 ¼ ðdB:12=k� 2rt3Þ2 þ ðdB:13=k� 2rt2Þ2 þ � � � þ ðdB:34=k� 2rT1Þ2

RSS ¼ RSS1 þ RSS2

ð13Þ

We will designate this approach as the scaled approach to dis-
tinguish it from the unscaled approach specified in Eq. (11). It is
not clear which approach is better. For example, although the dis-
tance value from the third codon position is much greater than that
from the first and second codon positions, it might not justify the
scaled approach because the third codon position, less constrained
by natural selection, should provide better estimates of evolution-
ary time as long as substitution saturation (Xia and Lemey, 2009;
Xia et al., 2003) is not an issue. In addition, the third codon position
exhibits little heterogeneity in substitution rate over sites relative
to the first and second codon positions, which is a highly desirable
property in molecular phylogenetic reconstruction (Xia, 1998). In
other words, the third codon position may deserve a greater weight
than codon positions 1 and 2 for dating evolutionary events and
should not be scaled to have the same weight as codon positions
1 and 2. The unscaled method is comparable to the combined anal-
ysis in the likelihood or Bayesian framework (Rannala and Yang,
2007; Yang and Yoder, 2003) where the fast-evolving gene should
affect the estimation more than slow-evolving genes (i.e., a set of
aligned sequence or site partitions that have experienced few sub-
stitutions contribute little to discriminating among different
parameter values).

In general, for the same period of evolutionary time, the fast-
evolving gene (i.e., the one generating large pairwise distances) is
expected to conform to neutral evolution better than a slow-
evolving gene subject to functional constraints. For this reason,
the unscaled method seems more justifiable. Following this rea-
soning, we can perform a simple combined analysis involving Ng

genes by generating a new distance matrix with dij computed as
a weighted average:

dij ¼
PNg

k¼1dijk
�dkPNg

k¼1
�dk

ð14Þ

where �dk is the mean of all the pairwise distances from gene k.
2.4. Dating with local clocks

Molecular sequence data violating a global clock have long been
known (Britten, 1986; Li and Tanimura, 1987; Li et al., 1987; Li and
Wu, 1987; Wu and Li, 1985) and it is rare for a large tree to have a
global clock operating along all lineages (Pereira and Baker, 2006;
Smith et al., 2006; Tinn and Oakley, 2008). Relatively fast evolving
lineages will have overestimated divergence times if a global clock
is imposed. Although protocols are available to eliminate offending
lineages that do not conform to the global clock (Rambaut and
Bromham, 1998; Takezaki et al., 1995) and to generate linearized
trees, such treatments lead to inefficient use of data and are prac-
tical only when the majority of the lineages conform to the global
clock. For this reason, local clocks are often necessary for practical
dating.

There are two general approaches for local-clock dating. The
first is when specific lineages are a priori known to evolve differ-
ently from others and can therefore be explicitly modeled. Several
approaches have been proposed to solve this local-clock dating
problem (Kishino and Hasegawa, 1990; Yoder and Yang, 2000).

The second approach to local-clock dating is the rate-smoothing
pioneered by Sanderson (1997), based on the inference that the
evolution rate is autocorrelated along lineages (Gillespie, 1991).
This constraint of rate autocorrelation will penalize dramatic
changes in evolutionary rate along lineages. Thus, for rapidly evolv-
ing lineages, this approach will result in a divergence time smaller
than that from the global clock approach, but larger than that from
the first approach without the constraint of rate autocorrelation.
We will illustrate both approaches for comparative purposes.
2.4.1. Local clock with lineages known a priori to evolve differently
Suppose we have four lineages with very different evolutionary

rates (Fig. 2a), with the lineages leading to OTU 1 and OTU 2 ex-
pected a priori to evolve at different rates from lineages leading
to OTU 3 and OTU 4. Note that, although we labeled branch lengths
(bi) on the tree, in practice both branch lengths and pairwise dis-
tances are unknown and need to be estimated from the data. Thus,
the input for the local-clock dating is a distance matrix, a topology,
and a specification of which lineages have different rates.



OTU1

OTU2

OTU3

OTU4

b1=5
r1

b6 unknown but (b5+b6 = 9)

b4=3

b3=2
b2=2
r2

OTU1

OTU2   7

OTU3  10  7

OTU4  16 13 12

T1 = 10

t2 = 5

t3 = 1.6667
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r = 0.6833
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(a) (b)
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b5 unknown

Fig. 2. A four-OTU tree with lineage-specific evolutionary rates (a). The branch lengths are indicated on the branch, together with the distance matrix with each distance
being the path length from OTU i to OTU j (b). In practice, branch lengths are unknown and the distance matrix needs to be estimated from the data. T1 is the calibration point,
and t2 and t3 are dated with either three rates (r0, r1 and r2), i.e., a local-clock model (a) or a single rate r, i.e., a global clock (c).
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Let’s designate evolutionary rate from t3 to OTU 1 as r1, and
from t3 to OTU 2 as r2. The rest of the lineages are assumed to
evolve at the rate r0. Given the evolutionary distances (Fig. 2b)
and calibration time T1 (Fig. 2a), we can obtain r0, r1 and r2 as well
as t2 and t3 by minimizing the following RSS

RSS ¼ ðd12 � r1t3 � r2t3Þ2 þ ðd13 � r1t3 � r0ðt2 � t3Þ � r0t2Þ2

þ ðd14 � r1t3 � r0ðt2 � t3Þ � r0ðT1 � t2Þ � r0T1Þ2

þ ðd23 � r2t3 � r0ðt2 � t3Þ � r0t2Þ2 þ ðd24 � r2t3 � r0ðt2 � t3Þ
� r0ðT1 � t2Þ � r0T1Þ2 þ ðd34 � r0t2 � r0ðT1 � t2Þ � r0T1Þ2

ð15Þ

Note that the local-clock model specified in Eq. (15) is reduced
to the global clock model specified in Eq. (1) when r0 = r1 = r2.

Taking partial derivatives of RSS in Eq. (15) with respect to r0, r1,
r2, t2 and t3, setting the derivatives to 0 and solving the resulting
simultaneous equations, we obtain

r0 ¼
d34

2T1

r1 ¼
ð2d12 þ d13 þ d14 � d23 � d24Þd34

A

r2 ¼
ð2d12 þ d23 þ d24 � d13 � d14Þd34

A

t2 ¼
ðd13 þ 2d34 þ d23 � d14 � d24ÞT1

2d34

t3 ¼
ðd12 þ 2d34 � d14 � d24ÞT1

d34

A ¼ 4ðd12 þ 2d34 � d14 � d24ÞT1

ð16Þ

With the actual dij values in Fig. 2b, we have r0 = 0.6, r1 = 3,
r2 = 1.2, t2 = 5 and t3 = 1.6667. Because the dij values we used are
the actual path lengths from the branch lengths shown in Fig. 2a,
i.e., dij values are accurate, the resulting RSS is 0, i.e., the fit of
the distance matrix to the tree is perfect.

In contrast, if we assume a single evolutionary rate (i.e., a global
clock), then we will have r = 0.6833, t2 = 6.2195, t3 = 5.2122 and
RSS = 13.1667 (Fig. 2c). In other words, the increased evolutionary
rates along lineages leading to OTU 1 and OTU 2 resulted in poor fit
of the distance matrix to the tree (i.e., a larger RSS) and the inflated
estimates of t2 and t3 (especially t3 due to the much faster evolu-
tionary rate along the lineage leading to OTU 1). Whether the
two parameters in the local-clock model (i.e., r1 and r2) justify
the decrease in RSS can be tested in the framework of model selec-
tion based on differences in RSS and the number of parameters
(Xia, 2009), given that the rate differences are expected a priori.

2.4.2. The rate-smoothing approach for local-clock dating
The rate-smoothing approach (Sanderson, 1997) involves two

steps. The first is to evaluate the tree to obtain the branch lengths,
which can be done either by distance-based or maximum likeli-
hood methods. The second is to use the estimated branches to esti-
mate divergence time with the constraint of rate autocorrelation.

With the distance matrix in Fig. 2b, the branch lengths (bi) can
be evaluated by either neighbor-joining or FastME and are shown
in Fig. 2a. Branch lengths b5 and b6 cannot be separately evaluated
by the distance-based methods without assuming a molecular
clock, and consequently only their summation, designated by
b5+6(=b5 + b6), is shown.

The second step in the rate-smoothing approach is to estimate
local rates, which are r1(=b1/t3), r2(=b2/t3), r3[=b3/(t2 � t3)], and so
on (Fig. 3). The method of rate-smoothing is to obtain t2, and t3

(with T1 as the calibration time) as well as b5 that minimize the fol-
lowing sum of squares:

RSS ¼ ðr1 � r3Þ2 þ ðr2 � r3Þ2 þ ðr3 � r5Þ2 þ ðr4 � r5Þ2

þ ðr5 � r0Þ2 þ ðr6 � r0Þ2

where

r0 ¼
b5þ6

2T1 � t2
; t2 < T1; t3 < t2

The minimization results in t3 = 5.4742, t2 = 8.5016, and
b5 = 0.8992 (which leads to b6 = b5+6 � b5 = 8.1008), with mini-
mized SS equal to 0.2500. All local rates were shown in Fig. 3. Note
that RSS in Eq. (17) is not comparable to RSS in other equations.

The rate-smoothing approach implies that evolutionary rate of
the ancestral lineage will always be between the evolutionary rates
of the child lineages, which reminds us of the dating approaches
assuming a Brownian motion model. Theoretically, there is no
strong reason to believe that the two child lineage cannot both
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Fig. 3. The estimated rates and divergence times from the rate-smoothing approach for local-clock dating. T1 is the calibration point.
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evolve faster than the ancestral lineage. However, with no external
information available, the best guess of the evolutionary rate of the
ancestral lineage should be some sort of average of the evolution-
ary rates of child lineages.

The application of Eq. (17) requires T1 to be fixed because, if T1 is
bounded with a minimum and maximum, then RSS will always be
the smallest when T1 equals the maximum. Specifically, when T1 is
increased n times, RSS will decrease by n2 times. This suggests that
a modified version of Eq. (17), i.e., RSSm ¼ RSS � T2

1, might allow T1

to be bounded. Unfortunately, such a modification only makes the
model unidentifiable because RSSm can be identical for any T1, i.e.,
if we obtain RSSm and rates ri with T1 = T, we can obtain the same
RSSm (but rates ri/n) with T1 = n � T, where n is any positive real
number.

It has been proposed that the rate-smoothing approach can
incorporate fossil uncertainty by using the fossil date as a
minimum age (Sanderson, 1997). For the reason in the previous
paragraph, this proposed approach is impossible. Molecular
sequences can be used to estimate branch lengths but not time
and rate separately. If we increase the calibration time 10 times,
then all estimated node times will be 10 times greater, and the
resulting rates will simply be 10 times smaller. This is the problem
shared by all dating approaches, including the likelihood and the
Bayesian (Yang, 2006). Multiplying the calibration time by n and
simultaneously dividing rate by n will not change the likelihood
(or RSSm in the least-squares approach). This invariance of likeli-
hood with respect to calibration time due to the confounding of
time and rate also causes problems in Bayesian inference. Because
the joint probability in the Bayesian inference is the product of the
prior and the likelihood, the invariance of likelihood means that
the prior for the calibration time used in Bayesian dating will not
be modified by the sequence data and will essentially be regurgi-
tated in the posterior in an undigested form.

With the least-squares approach we can also replace the cali-
bration time T by a distribution (the equivalent of a Bayesian prior),
e.g., a normal or exponential distribution with mean T, and repeat-
edly sample from this distribution to obtain a set of estimated
divergence times so that each internal node will have, instead of
a single estimate of divergence time, a set of estimated divergence
times that form a distribution. This ‘‘posterior’’ will have the same
shape as the ‘‘prior’’ and does not lead to better inference. This crit-
icism is also applicable to the Bayesian approach that sets a prior
on the calibration time.
One main problem with the constraint of rate autocorrelation is
whether the rate autocorrelation assumption is valid. If the
assumption is false, then much estimation error will be introduced.
For example, if one terminal lineage evolves very rapidly leading to
a long branch length (b), then the only way to minimize RSS in the
rate-smoothing approach is to increase the associated t because
r = b/t. This implies that all ancestral nodes (parent, grandparent,
etc.) of this lineage will tend to have overestimated divergence
times. This problem is quite obvious when we contrast estimates
in Fig. 2a (with no constraint of rate autocorrelation, and r1 = 3)
and Fig. 3 (with the constraint of rate autocorrelation, and
r1 = 0.9134). Constraining r1 to a small value necessitates a much
larger t3(=5.4742) in Fig. 3 relative to a much smaller t3(=1.6667)
in Fig. 2a.

2.5. Obtaining confidence intervals by using bootstrapping or
jackknifing

While some dating results are published occasionally without
an estimate of the variability of the estimated divergence time,
such results are generally difficult to interpret with any confidence.
A simple method to estimate the standard deviation of the time
estimates is to use a resampling method such as the bootstrap or
jackknife which have been used widely in molecular phylogenetics
(see Felsenstein, 2004 for an extensive review). The method is
applicable not only to aligned sequence data, but also to other ge-
netic data such as allele frequency data with multiple loci.

For each resampled data set i and a fixed topology with Nn inter-
nal nodes, one obtains tree i with a set of estimated divergence
time (Tij, where j = 1, 2, . . . , Nn). One can then obtain the standard
deviation of Tj (designated by sTj) as

sTj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðTij � TjÞ2

N � 1

s
; Tj ¼

PN
i¼1Tij

N
ð18Þ

where N is the number of resampled data sets. This method will be
applied to obtain the standard deviation of Ti values in dating the
divergence of the great apes and of major mammalian orders.

In a multi-gene scenario with a combined distance matrix from
Ng genes, one can perform resampling such as bootstrapping as fol-
lows. Each gene or each site partition is bootstrapped separately, so
each resample will lead to Ng sets of sequences and Ng separate dis-
tance matrices. These matrices can then be combined into one
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matrix according to Eq. (14), and the new matrix is then used for
dating. This can be repeated many times and the mean divergence
time and the associated standard deviation can then be estimated
in the same way as in Eq. (18).

The resampling approach has one problem in that, when the
amount of data is infinite, then the resampled distance matrices
will be identical, leading to no variation in the estimated diver-
gence time (Thorne and Kishino, 2005). This would give us false
confidence in the estimated time because of the often substantial
uncertainty associated with the fossil dating used for calibration.
It is important to keep in mind that the confidence here pertains
specifically to edata in Eq. (10). No amount of sequence data (or
other data used to estimate branch lengths) can reduce uncertainty
associated with fossil dates, i.e., efossil in Eq. (10) which can be esti-
mated only from additional fossil dating data. However, if one can
characterize the uncertainty in calibration time T by a distribution,
then one can repeatedly sample from this distribution to obtain a
set of time estimates for each internal node. In this case, when
sequence data is infinite, the variation in the estimated divergence
time will be all due to efossil.
2.6. What distances to use for distance-based dating

Dating often involves highly diverged taxa with associated se-
quences experiencing much substitution saturation. While the
problem of substitution saturation (Xia and Lemey, 2009; Xia
et al., 2003) can often be alleviated by using functionally con-
strained slow-evolving genes, this option is not advisable for
dating because functionally constrained genes often do not evolve
t1 t6

t5

T4

t3

T2

7. gibbon

6. Sumatran organgutan

5. Bornean orangutan

4. gorilla

3. bonobo

2. chimpanzee

1. human

Fig. 4. Topology for seven ape species. T2 and T4 are calibration points, and t1, t3, t5,
t6 and substitution rate r are to be estimated. OTUs are numbered so that dij in the
text refers to the evolutionary distance between OTUs i and j, e.g., d25 is the distance
between chimpanzee and Bornean orangutan.

Table 1
Distance matrix for the seven ape species. Values in the lower triangle are from the third
positions.

Species

Human 0.03377 0.03298
Chimpanzee 0.35614 0.01504
Bonobo 0.34434 0.11419
Gorilla 0.49710 0.46341 0.44526
Orangutan Ba 0.95933 0.94465 0.93699
Orangutan Sb 0.93121 0.94003 0.94296
Gibbon 1.33905 1.34517 1.31364

a Bornean orangutan.
b Sumatran orangutan.
in a clock-like manner. Dating ideally should use sequences that
conform to neutral evolution. Unfortunately, such sequences
typically evolve fast leading to substantial substitution saturation.
This implies that the conventional evolutionary distances
estimated by the independent estimation (IE) approach are often
inapplicable and simultaneous estimation (SE) of evolutionary
distances should be used (Tamura et al., 2004; Xia, 2009).

The IE approach has three serious problems (Xia, 2009). First, it
is often inapplicable for highly diverged sequences. Second, it is
internally inconsistent. Third, it suffers from insufficient use of
information. These problems are either eliminated or alleviated
by the SE approach.

There are two approaches to derive SE distances. The first is the
quasi-likelihood approach (Tamura et al., 2004), referred to as the
maximum composite likelihood distance in MEGA (Tamura et al.,
2007) and MLComposite in DAMBE (Xia, 2001, 2009; Xia and Xie,
2001), respectively. MEGA implemented the distance only for the
TN93 model (Tamura and Nei, 1993), whereas DAMBE implemented
it for both the TN93 and the F84 models, referred to as MLCompos-
iteTN93 and MLCompositeF84, respectively, with the latter facilitat-
ing the comparison between the distance-based tree-building
algorithms and the likelihood-based algorithms such as DNAML in
the PHYLIP package (Felsenstein, 2002). The second approach for
deriving SE distances is the least-square (LS) approach that has been
implemented in DAMBE for the TN93 and F84 models, referred to as
LSCompositeTN93 and LSCompositeF84, respectively (Xia, 2009).
3. Dating the divergence time of the great apes

The set of aligned mitochondrial sequences for seven ape spe-
cies contains 9993 sites from 12 protein-coding genes (Cao et al.,
1998). We chose this set of data to illustrate the LS-based dating
method for comparison with results from a previous study based
on Bayesian inference with the Markov chain Monte Carlo method
(Rannala and Yang, 2007). We also performed dating with BEAST
(Drummond and Rambaut, 2007) on the same data set. We used
the same topology (Fig. 4) as in Rannala and Yang (2007). Two fos-
sil calibration points are indicated on the topology by T2 = 14 mil-
lion years (Myr) and T4 = 7 Myr (Fig. 4), so we need to estimate
only t1, t3, t5, t6 and the substitution rate (r). However, T2 ad T4

can be further refined by using the least-square criterion.
The first and second codon positions are highly conserved in

this set of sequences, with most of the substitutions at the third co-
don position. In the first part of the application, we will first use the
3331 third codon positions to illustrate the LS method with a single
distance matrix. Choosing the third codon position is mainly be-
cause the third codon position is expected to evolve more in a
clock-like manner than the first and second codon positions that
are subject to strong purifying selection (Xia, 1998; Xia et al.,
1996). Although the third codon position is also under selection
pressure mediated by differential abundance of tRNA species
codon position and those in the upper triangle are from the first and second codon

0.04369 0.08152 0.07789 0.07964
0.04288 0.07899 0.07589 0.07468
0.04207 0.07845 0.07604 0.07483

0.07895 0.07840 0.07707
0.99102 0.03050 0.08896
0.98467 0.20216 0.08806
1.37386 1.42659 1.38938
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Fig. 6. Comparing the LS-based dating (horizontal axis) and the dating based on
Bayesian inference with Markov chain Monte Carlo (BI–MCMC) from Rannala and
Yang (2007) and from BEAST (vertical axis), all assuming a global clock.
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(Carullo and Xia, 2008; Xia, 2005, 2008), such selection is generally
weak (Higgs and Ran, 2008) and expected to be much weaker than
the purifying selection at the first and second codon positions.

The second part of the application illustrates the combined
analysis involving more than one distance matrix. The combined
analysis is performed on two distance matrices, one from codon
positions 1 and 2 and the other from the third codon positions.

The evolutionary distance (dij, where i and j correspond to the
taxon numbering in Fig. 4, i.e., d12 is the distance between human
and chimpanzee) is computed by using the simultaneous estima-
tion method (Tamura et al., 2004) implemented in DAMBE (Xia,
2001; Xia and Xie, 2001) for the F84 substitution model which
was used in Rannala and Yang (2007). Distances from codon posi-
tions 1 and 2 are in the upper triangle in Table 1 and those from the
third codon positions are in the lower triangle in Table 1.

3.1. Dating with a single distance matrix

With the tree topology (Fig. 4) and the two calibration points (T2

and T4) indicated on the topology, the LS solution of the substitu-
tion rate (r) and the divergence time (t1, t3, t5, and t6) is

r ¼ A
4B

t1 ¼
ðd17 þ d27 þ d37 þ d47 þ d57 þ d67ÞB

3A

¼ ðd17 þ d27 þ d37 þ d47 þ d57 þ d67Þ
12r

t3 ¼
2ðd14 þ d24 þ d34ÞB

3A
¼ ðd14 þ d24 þ d34Þ

6r

t5 ¼
2d23B

A
¼ d23

2r

t6 ¼
2d56B

A
¼ d56

2r

A ¼ T4ðd12 þ d13Þ þ T2ðd15 þ d16 þ d25 þ d26 þ d35 þ d36 þ d45 þ d46Þ

B ¼ 4T2
2 þ T2

4

ð19Þ
14.757±0.217

20.903±1.503

Soft calibration point = 
14 million years

Soft calibration point = 
7 million years

14±0

20.655±1.221

Hard calibration point 
= 14 million years

Hard calibration point 
= 7 million years

(a)

(b)

Fig. 5. Dating the divergence of the great apes with the LS-based method with fixed (ha
mean ± s (standard deviation) estimated from 100 bootstrap samples. Two soft calibrati
These LS-estimates are appropriate when the fossil dates are
accurate, i.e., T2 and T4 (equal to 14 and 7 Myr, respectively) are
true divergence times of their respective nodes. The residual sum
of squares (RSS) is 0.04339 when the calibration points T1 and T2

are fixed, with r and ti values estimated by using Eq. (19). The
divergence times estimated, together with the standard deviation
of the estimates, are shown in Fig. 5a, with the evolutionary rate
(r) equal to 0.0326 per million year, or 3.26 per 100 Myr as in
Rannala and Yang (2007).

When T1 and T2 are allowed to change to minimize RSS, RSS is
reduced to 0.0149 with the estimate of r equal to 3.105 per
100 Myr which is similar to that in Rannala and Yang (2007) where
they obtained r = 3.11 when a global clock is imposed and with
soft-bounding of the divergence time. The dating details, together
with the bootstrap-estimated standard deviation of the estimates,
are shown in Fig. 5b. These time estimates are similar to those from
Rannala and Yang (2007) using the Bayes MCMC method (Fig. 6).
For comparison, we have also estimated the divergence time by
human

chimpanzee

bonobo
1.818±0.180

5.487±0.434

gorilla

7.258±0.530

orangutan

sumatran
3.206±0.280

gibbon

1.754±0.184

7±0

7.079±0.527

3.104±0.273

human

chimpanzee

bonobo

gorilla

orangutan

sumatran

gibbon

rd) calibration points (a) and soft calibration points (b). Each node is labeled by the
on points shown in the figure were used in dating.
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using BEAST (Drummond and Rambaut, 2007) which is now a lead-
ing method for estimating evolutionary rates and divergence
times. Setting options with the HKY85 model, with no rate hetero-
geneity over site, with the clock model being ‘Relaxed clock: uncor-
related lognormal’, with tree prior set to ‘Speciation: Yule process’,
with T2 set to have a mean of 14 Myr and standard deviation of
1.3 Myr in a normal distribution, T2 set to have a mean of 7 Myr
Table 2
Dating results for data at codon position 3 (CP3Only), for combined analysis of two
matrices (one from codon positions 1 and 2 and the other from codon position 3)
using unscaled approach (Unscaled) and scaled approach (Scaled). Initial values for T2

and T4 are 14 and 7 Myr, respectively. Substitution rate r is measured by the expected
number of substitutions per site per 100 Myr.

Time CP3Only Unscaled Scaled

t1 (Gibbon–hominid) 21.558 20.312 17.239
T2 (orangutan–human + chimp + gorilla) 14.750 14.200 14.200
t3 (Gorilla–human + chimp) 7.314 6.991 7.388
T4 (human–chimp) 5.500 5.200 5.600
t5 (chimp–bonobo) 1.830 1.709 2.243
t6 (Bornean orangutan–Sumatran orangutan) 3.244 3.029 4.345
r12

a 0.241 0.259
r3

b 3.105 3.356 3.603

a Substitution rate at codon positions 1 and 2.
b Substitution rate at codon positions 3.

46.073±5.575

49.231±4.101

66.992±5.038

56.059±5.436

78.210±1.871

26.761

37.6

36.351±2.849

calibration time = 77 Myr

calibration time = 35 Myr

cali

Fig. 7. Dating the divergence of primates with the LS-based method. Each node is labele
100 bootstrap samples. A global clock and the F84 substitution model were used. Three
and standard deviation of 1.3 Myr in a normal distribution, chain
length equal to 1,000,000 and pre-burnin of 10,000, we obtained
time estimates very close to those from the LS method (Fig. 6).

3.2. Dating with multiple distance matrices

Here we use two distance matrices to illustrate combined anal-
ysis with multiple distance matrices. The first distance matrix is
from codon positions 1 and 2 of the ape mitochondrial sequences
and the second distance matrix is from codon position 3 (upper
and lower triangular matrices in Table 1, respectively). Because
the distances from the third codon position are much greater than
those from codon positions 1 and 2, we used both unscaled and
scaled analyses for comparison. We should mention at the very
beginning that it is not a good idea to combine highly heteroge-
neous genes or site partitions. So it is not a good approach to com-
bine the third codon position with first and second codon
positions. We used the two matrices only to illustrate the method.

Designate the substitution rate and evolutionary distance at the
first and second codon positions as rA and dA.ij, respectively, and
those at the third codon position rB and dB.ij, respectively. The k
value, estimated by the linear regression of dB = k � dA, is 13.9. An
unscaled analysis analogous to that specified in Eq. (11), combining
the two distance matrices, results in estimates (under column
heading ‘‘Unscaled’’ in Table 2) very similar to those obtained with
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the third codon position alone (under column heading ‘‘CP3Only’’
in Table 2). This is expected because the estimation is dominated
by the distance matrix with greater values. A scaled approach,
analogous to that specified in Eq. (13), has slightly different results
(under column heading ‘‘Scaled’’ in Table 2). For comparison with
the estimates from a combined analysis with site partitions or mul-
tiple genes in the likelihood or Bayes framework, we should use the
estimates from the unscaled method.
Dating with a new distance matrix generated by using Eq. (14)
produced results almost identical to that with the third codon po-
sition alone. This is understandable because the new dij is almost
identical to dij based on the third codon position alone.

We have also performed dating and bootstrapping with the
three site partitions (i.e., the three codon positions) as follows.
Each site partition was bootstrapped separately, so each resampled
data set will lead to three separate distance matrices for first, sec-
ond and third codon positions, respectively. The three matrices are
then combined into one matrix according to Eq. (14). The new ma-
trix is then used for dating. This is repeated 100 times, and the
mean divergence time and the associated standard deviation are
estimated in the same way as in Eq. (18). The results are similar
to those in Fig. 5, but the standard deviation is slightly larger,
which is understandable because the second codon position
violates the molecular clock hypothesis (likelihood ratio test.
With the F84 model, ln L is �6381.9048 and �6388.4284,
respectively, for a tree without a clock and with a global clock,
2D ln L = 13.0471, DF = 5, p = 0.0229). Combining third codon posi-
tions from different mitochondrial protein-coding genes invariably
leads to reduced standard deviation.
4. Dating the divergence time of the mouse lemurs

Here we compare the dating results between the LS method and
BEAST (Drummond and Rambaut, 2007) by using the mouse lemur
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data set (Yang and Yoder, 2003). The data set consists of two mito-
chondrial genes (COII and Cyt-b) from 35 mammalian species, of
which 26 are primate species. We used only the 604 third codon
positions of the primate species because the third codon position
evolves in a more clock-like manner than the other two codon
positions (Yang and Yoder, 2003).

Three calibration points for primates and four calibration points
for non-primates were used in Yang and Yoder (2003). However,
the calibration points for non-primate species are somewhat
doubtful as expressed in the original publications cited in Yang
and Yoder (2003). So we used only the three calibration points
for the primates. We used BEAST with the settings identical to
those for analyzing the great ape data except that the calibration
points which are 77 Myr for the root of primates, 35 Myr for mon-
key/ape divergence and 10 Myr for human/gorilla divergence, i.e.,
the same as those used in Yang and Yoder (2003).

We first performed dating with BEAST and the LS-based method
by using only the primate species. The dating results from the LS-
based method (Fig. 7) are shown with each node labeled with the
mean divergence time and the standard deviation estimated by
100 bootstrap samples. The results are nearly identical to those
from BEAST (Fig. 8) where each node is labeled with a 95% high
posterior density (HPD) interval of the estimated divergence time.
The mean divergence time from the LS-based method consistently
fall right in the middle of the time interval from BEAST
(Figs. 7 and 8).
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Fig. 10. Dating the divergence of major mammalian lineages with the LS-based method
omitted.
To check whether there might be discordance with deep or
shallow divergence times, we have plotted all corresponding diver-
gence times from BEAST and from the LS-based method. The points
effectively fall on a straight line (Fig. 9).

Dating results with all 35 mammalian species (Fig. 10) are also
consistent with those from BEAST (not shown) as well as those
from the maximum likelihood (ML) method (Yang and Yoder,
2003). All three methods are nearly equivalent, but the 95% confi-
dence interval is narrower for estimates from the LS method than
those from BEAST. This is understandable because the BEAST ap-
proach includes a guesstimate of the uncertainty of the fossil dates.
Yang and Yoder (2003) did not present estimates of variability of
estimated divergence time.

The LS method has been implemented in DAMBE (Xia, 2001; Xia
and Xie, 2001). We attach an appendix on how to use the LS-based
method for dating with DAMBE.
5. Discussion

The LS-based method is well established in statistical estima-
tion. Although the sharing of ancestry among sister lineages may
give rise to some controversy, this does not seem to cause much
problem in practical molecular phylogenetics. The distance-based
method has been used as frequently in phylogenetic reconstruction
as other methods (Kumar et al., 2008), and the method is generally
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consistent when the distance is estimated properly with suitable
substitution models (Felsenstein, 2004; Gascuel and Steel, 2006;
Nei and Kumar, 2000). Even when the distance is over- or under-
estimated, the resulting bias is generally quite small (Xia, 2006).

While the performance of distance-based methods in dating
speciation and gene duplication events have not been evaluated
extensively, the similarity between the estimates from the dis-
tance-based dating and those from Bayesian inference (Rannala
and Yang, 2007) and from BEAST suggests that the distance-based
method is not only very simple and extremely fast, but also
accurate.

The cause of the minor difference between estimated diver-
gence time in this paper and those in Rannala and Yang (2007)
can be attributed mainly to the two calibration points T2 and T4.
Applying the LS criterion, the distance-based method fine-tuned
T2 to 14.20–14.75 Myr in the three separate estimations (Table 2)
and T4 to 5.2–5.6 Myr in the three separate estimations (Table 2).
In Rannala and Yang (2007), T2 was fine-tuned to �16 Myr and
T4 to 6.1–6.2 Myr. A recent study with extensive data analysis
found T4 to be 4.1 Myr (Hobolth et al., 2007), suggesting that the
LS estimate (5.2–5.6 Myr) may be closer to the truth that that in
Rannala and Yang (2007) with T4 > 6 Myr. Also, the current consen-
sus on T2 among paleoanthropologists is 14 Myr or earlier
(Raaum et al., 2005), again suggesting that our estimate here
(14.20–14.75 Myr) may be closer to the truth that that in Rannala
and Yang (2007) with T4 ranging from 15.8 to 16.3 with different
clock models.

In recent years, heterochronous data from serially samples of
rapidly evolving sequences such as HIV-1 sequences have become
popular. Distance-based methods for dating with serial samples
have already been developed (Drummond et al., 2001; Drummond
and Rodrigo, 2000; O’Brien et al., 2008; Yang et al., 2007) and were
not included in this manuscript.

The dating method presented here should be useful for many
new genome-based distances proposed in recent years. These in-
clude genome BLAST distances (Auch et al., 2006; Deng et al.,
2006; Henz et al., 2005), breakpoint distances based on genome
rearrangement (Gramm and Niedermeier, 2002; Herniou et al.,
2001), distances based on the relative information between una-
ligned/unalignable sequences (Otu and Sayood, 2003), distances
based on the sharing of oligopeptides (Gao and Qi, 2007), the com-
posite vector distance (Xu and Hao, 2009), and composite distances
incorporating several whole-genome similarity measures (Lin
et al., 2009).

In short, the distance-based least-squares method for dating
speciation and gene duplication events can provide fast and accu-
rate estimates of divergence times if the topology is correct, if a
proper substitution model is used for estimating distances and if
SE distances instead of IE distances are used when the taxa are
highly diverged.
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