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Glossary 
Cladogenic event An event in which a gene or genomic 
lineage diverges into two or more lineages. 
Parameter estimation Statistical protocol for obtaining 
the point and interval estimate of the parameter. 
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Population parameter A quantity of interest in a 
population to be estimated from a sample taken from the 
population. 
The genotypic frequency is the frequency of a particular geno­
type in a population. The conceptual definition of a genotype is 
the genetic makeup of a cell, an organism, or an individual. As 
individuals are almost always unique except those from clonal 
reproduction, the conceptual definition would imply that all 
genotypic frequencies would be 1/N, where N is the population 
size. In population genetics, a genotype is often defined for one 
or a few loci in diploid species, so that there are three genotypes 
(AA, Aa, and aa) for a single locus with two different alleles 
(A and a). With two loci each with two alleles, we would have 
nine different genotypes, AABB, AaBB, aaBB, …, aabb. 

Genotypic frequencies are most frequently used to compute 
allele frequencies and the inbreeding coefficient which is the 
basis for other F statistics in population genetics. For a single 
locus with two alleles (A and a), and the counts of the three 
genotypes (NAA, NAa, and Naa) being 30, 50, and 20, respec­
tively, we have genotypic frequencies PAA = 0.3, PAa = 0.5, and 
Paa = 0.2. The allele frequencies pA and pa are then 

2NAA þNAa pA ¼ ¼ 0:55; pa ¼ 1 − pA ¼ 0:45 ½1� 
2ðNAA þNAa þNaaÞ 

The conversion from genotypic frequencies to allele frequen­
cies leads to significant loss of information which is often 
measured by Shannon entropy (H). The information contained 
in the genotypic frequencies and allele frequencies, designated 
by Hgenotype and Hallele, respectively, are 

Hgenotype ¼ −ðPAA log 2ðPAA Þ þ PAa log 2ðPAaÞ þ Paa log 2ðPaaÞÞ
¼ 1:4855 ðbitsÞ 

Hallele ¼ −ðpA log 2ðpA Þ þ pa log 2ðpaÞÞ ¼ 0:9928 ðbitsÞ ½2� 
If the allele frequencies are equal, then the information in the 
allele frequencies will be exactly 1 bit and the information in the 
expected genotypic frequencies assuming the Hardy–Weinberg 
equilibrium (i.e., PAA =0.25,  PAa =0.5,  and  Paa = 0.25) will be 
exactly 1.5 bits. The loss of information during the conversion 
from genotypic frequencies to allele frequencies implies that 
genotypic frequencies cannot be recovered from allele frequen­
cies. This has implications for us to choose parameter estimators. 
When a population parameter (e.g., genetic distance between 
two populations) can be estimated by either genotypic frequen­
cies or allele frequencies, the estimation based on the genotypic 
frequencies is always more preferable. 
When two loci each with two alleles are completely linked, 
they are equivalent to a single locus with two alleles, with only 
three genotypes. If the two loci are not linked, then there would 
be nine genotypes and the information in the genotypic fre­
quencies will be the summation of information in the 
genotypic frequencies for each locus. The information is 
equivalent to genetic variance, of which the additive compo­
nent is directly related to directional selection. This is why 
increased recombination, by increasing information, can lead 
to more efficient selection. 

Genotypic frequencies are also frequently used for estimat­
ing the inbreeding coefficient and the associated F statistics. 
The inbreeding coefficient (F), in the case of one locus with two 
alleles, is defined by 

2PAA ¼ pAð1 − FÞ þ pA F 
PAa ¼ 2pApað1 − FÞ ½3� 

2Paa ¼ pa ð1 − FÞ þ paF 

The log-likelihood function for estimating pA and F is therefore 

PNAa PNaaln L ¼ ln ðPNAA Þ ½4�AA Aa aa 

Taking the partial derivatives of lnL with respect to pA and F, 
setting the partial derivatives to zero and solving the two result­
ing simultaneous equations, we obtain pA and F as functions of 
genotypic frequencies: 

2 NAA þNAa
 pA ¼ 
2 ðNAA þNAa þNaaÞ
 ½5�4NAA Naa− N2 

AaF ¼ 
2 NAA NAa þ 4NAA Naa þN2 þ2NAa NaaAa 

The maximum likelihood approach is particularly useful when 
computing an estimate of F from multiple loci because the 
likelihood function for multiple loci is just the product of the 
likelihood functions for individual loci. Suppose we have 
locus 1 with NAA = 1469, NAa = 138, Naa = 5, and locus 2 with 
NBB = 100, NBb = 60, Nbb = 5. The F value, when estimated 
separately for each locus, would be 0.0227 for locus 1 and 
−0.0879 for locus 2. The likelihood estimate of F from the 
two loci is 0.0108, which is closer to the estimate from locus 
1 because locus 1 has more data and therefore contributes more 
to the final estimate than locus 2. 
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One difficulty with genotype characterization is the pre­
sence of hidden alleles. Suppose a locus with three alleles A, 
B, and C, with alleles A and B producing distinct protein bands 
(electromorphs) in electrophoresis and allele C producing no 
band. This will lead to scoring AC and BC heterozygotes as AA 
and BB homozygotes. When the frequency of allele C is low, 
the sample may contain no CC individual. Even if a few CC 
individuals have been sampled, the lack of bands for these CC 
individuals may be attributed to experimental errors instead of 
alerting us to the presence of hidden alleles. 

Theory of statistical estimation can help us detect the pre­
sence of hidden alleles and estimate their frequencies. Here, we 
illustrate a simple case involving the three-allele system men­
tioned above by assuming the Hardy–Weinberg equilibrium. 
We have a three-allele hypothesis (H3) and a two-allele hypoth­
esis (H2) and need to decide which one describes the data 
better. Suppose we obtain 30 individuals with a single A 
band, 30 with a single B band, and 40 with both A and B 
bands (NA? = 30, NB? = 30, NAB = 40). With H2, which assumes 
NA? = NAA and NB? = NBB, the proportion of AA, AB, and BB 
genotypes is p2A, 2pApB, and pB

2, respectively. So the 
log-likelihood function for estimating pA is 

2 2ln LH2 ¼ NAA ln ðpA Þ þNAB ln ð2pA pBÞ þNBB ln ðpBÞ ½6� 
which will lead to pA = 0.5 and ln LH2 

= −110.903 55. We do not 
need to estimate pa because pa = 1  – pA. 

With H3, we need to estimate pA and pB. The log-likelihood 
function is 

2ln LH3 ¼ NA? ln ðpA þ 2pA pCÞ þNAB ln ð2pA pBÞ 
2þNB? ln ðpB þ 2pB pCÞ ½7� 

which will lead to pA = pB = 0.4667 and ln LH3 
= −109.623 26. 

We can use the likelihood ratio test to evaluate which of the 
two hypotheses are significantly better than the other. With the 
large sample approximation, χ2 = 2(ln LH3 

– ln LH2
) follows the 

chi-square distribution with Δp degrees of freedom (DF, where 
Δp is the difference in the number of parameters between the 
two hypotheses, and is 1 in our case as H3 has one more allele 
frequency to estimate than H2). With χ2 = 2.5606 and DF = 1, 
p = 0.1096, and we cannot reject H2 in favor of H3 at the 0.05 
level. 

An alternative to significance test in model selection is to 
use the information theoretic indices such as Akaike informa­
tion criterion (AIC) defined as 
� � � �
� � � �

� � � �

AIC ¼ −2 ln  L þ 2Np ½8� 
where Np is the number of parameters in the model, being 1 in 
H2 and 2 in H3. The smaller the AIC value, the better the model. 
With AIC equals 223.8071 for H2 and 223.2465 for H3, the 
criterion slightly favors H3. 

One may also use the least-squares method for parameter 
estimation and model selection. The residual sum of squares 
(RSS) for H2 and H3 are, respectively, 

2 2 2RSSH2 ¼ NAA − pA N 2 þ ðNAB −2pA pBN Þ2 þ NBB − pBN 
Þ2RSSH2 ¼ NA ? − p2A þ 2pA pC N 2 þ ðNAB −2pA pBN 

2 2þ NB ? − pB þ 2pBpC N 

where N ¼ NA ? þNAB þNB ? ½9� 
To obtain pA with H2, we take the derivative of RSSH2 

with 
respect to pA, set the derivative to zero, and solve for pA. This 
results in pA = 0.5 and RSSH2 

= 150. To obtain pA and pB with H3, 
we take partial derivatives of RSSH3 

with respect to pA and pB, set 
the partial derivatives to zero, and solve for pA and pB from the 
two resulting simultaneous equations. This leads to 
pA = pB = 0.4454 and RSSH3 

= 0.4821. Thus, H3 fits the date 
much better than H2. The information theoretic indices can 
also be used with RSS by a relationship between RSS and like­
lihood, with the result favoring H3. 

Differences in genotypic frequencies among different popu­
lations can be used to study genetic divergence, calculate 
genetic distances, build phylogenetic trees, and date cladogenic 
events using the genetic distances. 

See also: Allele Frequency; Alleles; Genotype; Hardy–Weinberg 
Law; Least Squares; Locus; Maximum Likelihood. 
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