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Abstract. More and more researchers in phylogenetics are concatenating gene 
sequences to produce supermatrices in the hope that larger data sets will lead to 
better phylogenetic resolution. Almost all of these supermatrices contain a high 
proportion of missing data which could potentially cause phylogenetic bias. 
Previous studies aiming to identify the missing-data-mediated bias in the max-
imum likelihood method have noted a bias associated with among-site rate vari-
ation. However, this finding is by sequence simulation and has been challenged 
by other simulation studies, with the controversy still unresolved. Here I illu-
strate analytically this bias caused by missing data coupled with among-site rate 
variation. This approach allows one to see how much the bias can contribute to 
likelihood differences among different topologies. The study highlights the 
point that, while supermatrices may lead to “robust” trees, such “robust” trees 
may be purchased with illegal phylogenetic currency. 

Keywords: missing data, pruning algorithm, likelihood, phylogenetic bias, su-
permatrix. 

1 Introduction 

Many supermatrices have been compiled in recent years by concatenating sequences 
from many different genes [1-4]. Such concatenated genes typically have few shared sites 
among all included species. For example, while Regier et al. [3] claimed to have 41 kilo-
bases of aligned DNA sequences, the actual number of sites that are completely unambi-
guous among all 80 species amounts to only 705 sites. Some genes are completely miss-
ing in nearly half of the 80 species. While the potential problems involving such “?”-
laden supermatrices have been suspected before[5], specific biases associated with such 
missing data have not been well studied, especially not in the likelihood framework 
which has been the gold standard in phylogenetic reconstruction.  

Previous studies [6-11] attempted to identify bias associated with missing data ei-
ther by sequence simulation or by selectively eliminating sites in a real sequence 
alignment. While most publications suggest that phylogenetic reconstruction is  
not sensitive to missing data or that the benefit of including taxa with missing data 
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out-weight the cost of their exclusion [6, 8-11], a recent study [7] suggested a signifi-
cant bias associated with missing data and coupled with among-site rate variation. 
However, such simulation-based findings often cannot pin-point where the bias arises 
and consequently have been challenged by others on both empirical [6, 9, 11] and 
theoretical grounds [9], although these latter publications did not explicitly test the 
claimed bias [7] associated with among-site variation. Roure et al. [9] noted that, if 
sequences contain similar phylogenetic information, then phylogenetic reconstruction 
is not sensitive to missing data. However, they also noted that heterogeneous data 
could lead to phylogenetic bias based on extensive data analysis. 

Here I demonstrate analytically the bias associated with the missing data coupled 
with among-site rate variation. The pruning algorithm [12, 13, 14, pp. 253-255] is 
briefly outlined, in conjunction with the conventional missing data handling by the 
likelihood method, so that the reader can verify the claimed bias introduced by miss-
ing data. I first illustrate the “bias” shown by Lemmon et al. [7] when branch lengths 
are not allowed to be zero, by using both JC69 [15] and F84 [16] models. Such a  
“bias” can be easily avoided by simply allow branches to be zero and should not be 
considered as estimation bias in the likelihood method. However, the bias due to the 
missing data associated with among-site rate variation [7] is real. This bias can lead to 
either increased tendency (and confidence) to group together OTUs (operational  
taxonomic units) that share the same stretches of missing sites or in the opposite di-
rection. The results suggest that blindly concatenating sequence data to generate a 
supermatrix with many pieces of missing data will generate false confidence in phy-
logenetic resolution and should be avoided. 

2 Missing Data Handling and the Pruning Algorithm 

The likelihood approach features a convenient way to handle missing data, which is 
best illustrated with the pruning algorithm. Suppose we have four OTUs with  
sequence data in Fig. 1a, and with the last two sequences being entirely missing 
(represented by ‘?’). Obviously, we can only estimate the distance between S1 and S2 
but not the evolutionary relationships involving OTUs S3 or S4. The maximum like-
lihood distance between S1 and S2, based on the JC69 model, is given by  

 4 48!

4!4!
ii ijL P P=  (1) 

which, when maximized, leads to a distance of 0.8239592165.  
Fig. 2 illustrates the computation of the likelihood by the pruning algorithm, given 

the first site of the aligned nucleotide sequence (Fig. 1a) and topology T1 in Fig. 1. I 
included the numerical illustration here to facilitate the verification of subsequent 
claims that the maximum likelihood method does exhibit a true and identifiable bias 
in phylogenetic reconstruction involving missing data coupled with among-site rate 
variation. 
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(a)
S1 ACGTACGT
S2 GTCAACGT
S3 ????????
S4 ????????

(b)
S1 ACGTACGTACGTACGTACGTACGTACGTACGTACGT
S2 ACGTACGTACGTACGTACGTACGTACGTACGTACGT
S3 ACGT????????????????????????????????
S4 ACGT????????????????????????????????

(c)
Gene1|---------- Gene2 -------------|

S1 ATGACGTACGTACGTACGTACGTACGTACGTACGTACGT
S2 TCTACGTACGTACGTACGTACGTACGTACGTACGTACGT
S3 GGCACGT????????????????????????????????
S4 CAAACGT????????????????????????????????
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Fig. 1. Three sets of sequences, (a), (b) and (c), for four OTUs (operational taxonomic units), 
and three alternative topologies (T1, T2 and T3) for illustrating phylogenetic bias introduced by 
missing data. Branch lengths are represented by bi. The sequences in bold italic in (c) are the 
same as those in (b). Note that the three variable sites at the 5’ end could be diffused at different 
sites in the data instead of clumping together to be so easily recognized. 

 

Ly(A)=∑PAi(b3)L3(i) ∑PAi(b4)L4(i)=∑PAi(b3)∑PAi(b4)
Ly(C)=∑PCi(b3)L3(i) ∑PCi(b4)L4(i)= ∑PCi(b3)∑PCi(b4) 
Ly(G)=∑PGi(b3)L3(i) ∑PGi(b4)L4(i)=∑PGi(b3)∑PGi(b4)
Ly(T)=∑PTi(b3)L3(i) ∑PTi(b4)L4(i)=∑PTi(b3)∑PTi(b4)
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Lx(T)=PTA(b1)PTG(b2) L2(A) = 0
L2(C) = 0
L2(G) = 1
L2(T) = 0

L1(A) = 1
L1(C) = 0
L1(G) = 0
L1(T) = 0

L4(A) = 1
L4(C) = 1
L4(G) = 1
L4(T) = 1

L3(A) = 1
L3(C) = 1
L3(G) = 1
L3(T) = 1

Lz(A)=Lx(A)∑PAi(b5+b6)Ly(i)
Lz(C)=Lx(C)∑PCi(b5+b6)Ly(i)
Lz(G)=Lx(G)∑PGi(b5+b6)Ly(i)
Lz(T)=Lx(T)∑PTi(b5+b6)Ly(i)

x

z
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Fig. 2. Likelihood computation with the pruning algorithm [14, pp. 253-255] 
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We first define an array for each of the nodes including the leaf nodes. The array 
contains four elements for nucleotide sequences and 20 for amino acid sequences. For 
a leaf node i with a resolved nucleotide S, Li(S) = 1, and Li(not S) = 0. For an un-
known or missing nucleotide, Li(1) = Li(2)= Li(3)= Li(4) = 1. For an internal node i 
with two offspring (o1 and o2), Li is recursively defined as 

 
1 1 2 2

3 3

, ,
0 0

( ) ( ) ( ) ( ) ( )i sk i o o sk i o o
k k

L s P b L k P b L k
= =

   
=    
      
   (2) 

where bi,o1 means the branch length between internal node i and its offspring o1, and 
Psk is the transition probability from state s to state k. For example, bx,S1 (branch 
length between internal node x and its offspring S1) is b1 in Fig. 2. Internal node z is 
special in that we cannot estimate b5 and b6 separately because the resulting tree is 
unrooted. We simply move node z to the location of node y (or node x), so that either 
b5 or b6 is 0 and the other is then equal to (b5+b6). If b5 is 0, then Pii(b5) = 1 and Pij(b5) 
= 0, i.e., no time for anything to change. This leads to the simplified equations for 
computing Lz(i) in Fig. 2. The final likelihood is  

 
4

1

( )i z
i

L L iπ
=

=  (3) 

where πi is the frequency of nucleotide i. 
Given the JC69 model, the sequences in Fig. 1a have two site patterns, with the 

first four sites sharing one site pattern and the last four sites sharing the other site 
pattern. Designating the likelihood of the two site patterns in Fig. 1a as La.pattern1 and 
La.pattern2, the log-likelihood (lnL) for all eight sites (Fig. 1a), given topology T1 in Fig. 
1), is 

 . 1 . 2ln 4 ln( ) 4 ln( )a pattern a patternL L L= +  (4) 

which, upon maximization, leads to b1 + b2 = 0.8239592165, and lnL = -21.02998149. 
This is perfectly consistent with the result from Eq. (1) as we would have expected. 
Terms including b3, b4 and b5+b6 all cancel out in Eq. (4), suggesting that the se-
quences in Fig. 1a have absolutely no information for estimating b3, b4 and b5+b6, 
which again is what we would have expected. Note that lnL would be greater if we 
treat the two site patterns as two separate partitions and estimate branch lengths sepa-
rately. Assuming the JC69 model, the maximum likelihood is 0.252  for each site in 
the first partition (reached when b1 and b2 are infinitely large) and 0.25 for each site in 
the second partition (reached when b1 = b2 = 0), so lnL will then be 

 2ln 4 ln(0.25 ) 4 ln(0.25) 16.63553233L = + = −  (5) 

which indicates that maximizing lnL by partitioning the data may not be a good idea 
given the dramatically incompatible branch length estimates from the two partitions. 
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If we perform the computation again with topology T2 in Fig. 1, we will have ex-
actly the same lnL, but b5+b6 will be 0 and b1+b3 = 0.8239592165 (i.e., the distance 
between OTUs S1 and S2 is 0.8239592165 as before). This again is perfectly consis-
tent with results from Eq. (1). Topology T3 in Fig. 1 will lead to the same lnL and the 
same conclusion with distance between OTUs S1 and S2 being 0.8239592165.  

We can also fit the F84 model to the data in Fig. 1a which now has three sites pat-
terns, with the first two sites sharing the first site pattern, sites 3-4 sharing the second 
site pattern and sites 5-8 sharing the third site pattern. Because the nucleotide fre-
quencies of the four sequences are all equal to 0.25, and because of equal number of 
transitions and transversions in the sequences so that k = 1, the F84 distance between 
sequences S1 and S2 is defined by the following likelihood function: 
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 (6) 

where D is the F84 distance, Pii, Ps and Pv corresponding to transition probabilities for 
no change, transition and transversion, respectively. Maximizing L leads to k = 1 
(which is expected because we observe the same number of transitions and transver-
sions in the sequences in Fig. 1a) and D = 0.8664339758 which is slightly larger than 
the JC69 distance. 

Applying the pruning algorithm to the four sequences (Fig. 1a) and topology T1 in 
Fig. 1, we obtain a final likelihood function that includes only k and (b1+b2), i.e., there 
is no information to estimate b3, b4 and b5+b6 in topology T1 in Fig. 1. Maximizing the 
likelihood function leads to the maximum lnL = -20.79441542, reached when k = 1 
and (b1+b2) = 0.8664339758. This is exactly the same as the result derived from Eq. 
(6). If we perform the computation again with topology T2 in Fig. 1, we will have 
exactly the same lnL, but b5+b6 will be 0 and b1+b3 = 0.8664339758 (i.e., the distance 
between OTUs S1 and S2 is 0.8664339758). This again is perfectly consistent with 
results from Eq. (6). We can use topology T3 in Fig. 1 and will again obtain the same 
lnL and the same conclusion with distance between OTUs S1 and S2 being 
0.8664339758.  

Note that the application of the F84 model resulted in a small increase in lnL from 
-21.02998149 with the JC69 model to -20.79441542. This is expected from the se-
quence data in Fig. 1a which do not conform strictly to the JC69 model. S1 and S2 
differ by two transitions and two transversions instead of the 1:2 ratio expected under 
the JC69 model, so F84 is a more appropriate substitution model than JC69. 
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The transition/transversion ratio for the DNAML program (RDNAML) is defined [17. 
p. 18] as 

 DNAML

(1 / ) (1 / )
R T C Y A G R

R Y

k kπ π π π π π
π π

+ + +
=  (7) 

Given the equal nucleotide frequencies and k = 1, lnL from DNAML is maximized 
when RDNAML = 1.5, and DNAML outputs lnL = -20.79442 which is the same as 
shown above. The lnL values are the same for all three topologies. BASEML outputs 
the same k and lnL. Of course, if one uses DNAML with the default RDNAML of 2, then 
the three possible topologies will lead to different likelihood values. For this reason, 
one should not always use default values when running phylogenetic tools. However, 
misleading phylogenetic results due to misuse of default values should not be attri-
buted to bias in phylogenetic methods.  

3 A “Bias” That Is Not True Bias 

Suppose we now have the sequence data in Fig. 1b. The four sequences are identical 
except that S3 and S4 have part of the sequences missing, so there are only two site 
patterns assuming the JC69 model (with the first shared by the first four sites and the 
second by the last 32 sites containing unknown nucleotides). These sequences again 
allow us to have two straightforward expectations. First, the three topologies should 
have the same lnL. Second, all branches should have length equal to 0 (i.e., bi = 0). 
Third, the likelihood for each site is simply 0.25, so that the maximum lnL for the 
entire sequence alignment and for any of the three topologies is 

 ln 4 ln(0.25) 32 ln(0.25) 49.906597L = + = −  (8) 

which is reached when b1 = b2 = b3 = b4 = b5+b6 = 0. One could replace the JC69 
model by the F84 model, but the results will be the same because the greater generali-
ty of the F84 model relative to the JC69 model is not necessary for the sequence data 
in Fig. 1b. 

Both DNAML and BASEML produce results and conclusions quite different from 
our expectations when they are used to evaluate the three alternative topologies. First, 
topology T1 in Fig. 1 has higher lnL than the other two alternative topologies, and is 
declared by both DNAML and BASEML as significantly better than the other two 
alternative topologies. Second, the bi values listed in the output of DNAML and 
BASEML are greater than zero and their consequent lnL values are less than the max-
imum -49.906597 reached when bi values are all zero. 

This “bias” was analytically identified before [Supplemental Materials in 7], and it 
is not a true bias in the maximum likelihood method. The problem is caused by both 
DNAML and BASEML not allowing branch lengths to zero during their evaluation of 
the three alternative topologies. Most likelihood-based phylogenetic programs set a 
small constant as the lower bound for estimating branch lengths. If we force DNAML 
and BASEML to evaluate the four-taxon tree with zero branch lengths, they will find 
lnL to be equal to that in Eq. (8). As soon as we allow branch lengths to be greater 
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than zero, topology T1 in Fig. 1 will be favored against the other two alternative to-
pologies by DNAML and BASEML. 

The effect is easy to see if we simply set all branch lengths (bi values) to a small 
constant C and write down the likelihood functions for the two site patterns (shared by 
the first four sites and the last 32 sites, respectively) in sequences in Fig. 1b for topol-
ogies T1 and T2. For T1, the likelihood functions for the two site patterns (LT1.pattern1, 
LT1.pattern2), given the JC69 model, can be obtained by traversing the tree in Fig. 2 and 
expressed as 
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where all branch lengths are equal to C. Both LT1.pattern1 and LT1.Pattern2 reach the maxi-
mum 0.25 when C = 0 as one would expect. 

For topology T2, the likelihood function for the first site pattern shared by the first 
four sites is exactly the same as LT1.pattern1 in Eq. (9). However, the likelihood function 
for the second site pattern shared by the 32 “?”-containing sites, is different between 
topologies T2 and T1. For topology T2, the likelihood function for each of these 32 
sites is equal to  

 2 2 2

2. 2

1 3
( 3 ) (2 2 )

4 4
T patternL b b a a ab a= + + +  (10) 

which reaches the maximum 0.25 when C = 0 as one would expect. With the increase 
in C, LT2.pattern2 becomes smaller than LT1.pattern2, leading to T1 preferred over T2 (or T3). 
However, in practical data analysis, the difference should be negligible because the 
minimum branch length in software is usually set to a value in the order of 0.000001 
or smaller. With such a small C, the lnL difference contributed by one site is in the 
order of 0.000001. 

4 True Bias Involving Missing Data Coupled with Among-Site 
Rate Variation 

Suppose now we have sequence data in Fig. 1c, with Gene1 being variable but Gene2, 
which is missing in S3 and S4, is so conservative as to be invariant. In practice, 
Gene1 and Gene2 could be different segments within the same gene, e.g., the con-
served and variable domains in ribosomal RNAs with no clear boundary between 



 Phylogenetic Bias in the Likelihood Method Caused by Missing Data 19 

them. I used this configuration because (1) it has been used before in simulations [7], 
and (2) it represents a recurring pattern in published supermatrices. Note that the three 
variable sites at the 5’-end could be diffused at different sites in the data instead of 
clumping together to be so easily recognizable in real data.  

The sequences are intentionally made not to favor any one of the three possible to-
pologies (Fig. 1). For Gene1, the four OTUs are exactly equally divergent from each 
other given the JC69 and F84 models, i.e., each pair of sequences differ in exactly one 
transition and two transversions so that no particular topology is favored over the 
other two. Gene2 is extremely conservative and no substitution has been observed, so 
it also should not favor any topology over the other two. 

With the sequence data in Fig. 1c and topology T1 in Fig. 1, we can apply the prun-
ing algorithm and the JC69 model to compute the likelihood. There are only three 
different site patterns with the JC69 model, i.e., sites 1 to 3 share the first site pattern, 
sites 4 to 7 sharing the second and sites 8 to 39 sharing the third. Maximizing the 
likelihood will lead to lnL = -83.56464029 which is reached when b1 = b2 = 
0.04153005797, b3 = b4 = 0.3787544804, and (b5+b6) = 0.3511004094.  

The maximum lnL value for topology T2 in Fig., 1 is -83.96663731, reached when 
b1 = b3 = 0.04184900, b2 = b4 = 0.60765526, and (b5+b6) = 0.000947018. The maxi-
mum lnL value for topology T3 is the same as that for T2 and both are significantly 
smaller (p < 0.001) than that for T1 (Fig. 1) based on either the Kishino-Hasegawa test 
and RELL test [16] or Shimodaira & Hasegawa test [18]. DNAML reached exactly 
the same conclusion, so did BASEML with either the JC69 model or the F84 model. 
Note that, if the sequence alignment is 100 times as long (which is common in studies 
with supermatrices), the difference in lnL between T1 and T2 would be about 40, 
which is often greater than the difference between the best and the second best trees in 
a typical ML reconstruction. 

This rejection of topologies T2 and T3 in favor of T1 is not expected from the data 
in Fig. 1c because each pair of sequences differs by exactly one transition and two 
transversions. Why is topology T1 strongly favored by the likelihood method over T2 
and T3? We can find the answer by making a few observations below.  

First, different sites require different branch lengths for maximizing its likelihood. 
For example, the maximum likelihood for each of the first three sites (Fig. 1c), given 
the JC69 model, is 0.00390625 (=0.254) reached when b1 to b4 are infinitely large. In 
contrast, the maximum likelihood for each site from site 4 to site 7 is 0.25 reached 
when b1 to b4 are all zero. Thus, the log-likelihood for the first seven sites (lnL7), if 
maximized separately, would be 3*ln(0.254) + 4*ln(0.25), i.e., -22.18070977 for to-
pologies T1, T2 and T3. However, as a compromise between the first three and the next 
four sites, lnL7 becomes -32.96754443, reached when b1 = b2 = b3 = b4 = 
0.3841581410 and (b5+b6) = 0.1220492271. This result is applicable to all three to-
pologies. Thus, among-site rate variation itself does not cause phylogenetic bias if it is 
not lineage-specific, although a previous study [19] suggested that it does based on 
simulation studies. 

Second, the maximum log-likelihood for the 32 sites with missing values in Fig. 1c 
(lnL32) is also the same among the three topologies, being -44.36141955 when b1 = b2 
= 0 for topology T1 in Fig. 1a (all other branch lengths are irrelevant for computing 
lnL32 given T1). For topology T2 (Fig. 1a) to reach the same maximum lnL32, we need 
b1 = b3 = (b5+b6) = 0. Similarly, with T3, we need b1 = b4 = (b5+b6) = 0. Thus, the 
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branch lengths that maximize lnL32 (i.e., when all branch lengths are zero) are not the 
same as the branch lengths that maximize lnL7 (which is maximized when branch 
lengths are greater than zero, with optimal values specified above), and different to-
pologies impose different constraints on maximizing likelihood. 

Third, recall that lnL32 depends only on b1 and b2 for topology T1, but on more 
branch lengths for T2 and T3. With T1, b1 and b2 can be reduced to maximize lnL32 
(although not to zero because of the first three variable sites in Fig. 1c). Other branch 
lengths such as b3, b4 and (b5+b6) can take optimal values to maximize lnL7 without 
affecting lnL32. Because b1 and b2 are reduced to maximize lnL32, and consequently 
deviated substantially from the optimal branch length (= 0.3841581410) for maximiz-
ing lnL7, (b5+b6) is increased to 0.3511004094 to compensate. In contrast, lnL32 for 
topology T2 depends on b1, b3 and (b5+b6). Maximization of lnL32 for T2 can be 
achieved by reducing b1, b3 and (b5+b6) and at the same time increasing b2 and b4 as a 
compensation to maximize lnL7. This explains why the final T2 tree has relatively 
short b1, b3, both being 0.04184900, and a very small (b5+b6), being 0.000947018, but 
much larger b2 and b4, both being 0.60765526.  

To recapitulate, maximizing lnL7 requires b1 = b2 = b3 = b4 = 0.3841581410 and 
(b5+b6) = 0.1220492271, and maximizing lnL32 requires b1 = b2 = b3 = b4 = (b5+b6) = 
0. Obviously, conflicts in maximizing lnL32 and lnL7 is greater for topology T2 than 
for topology T1, leading to lnL greater for T1 than for T2. This result proves the  
finding by Lemmon et al. [7] reached through sequence simulation, i.e., missing data 
coupled with among-site rate variation could lead to phylogenetic bias. It should elim-
inate the doubt expressed on other empirical grounds [6, 11]. One way to eliminate 
the bias in favor one topology over others is to identify sites with different rates into 
different partitions. However, in real data, these variable sites may be diffused among 
conservative sites instead of clumping together as in Fig. 1c to be easily recognizable.  

An alternative to partition the sequence alignment is to use a gamma distribution to 
accommodate rate variation among sites. Unfortunately, parameter estimation (e.g., 
the shape parameter of the gamma distribution) often depends on topology. Ideally, 
we should get the same shape parameter regardless of which topology we use, but this 
is almost never the case. When we get different shape parameters from different to-
pologies, which shape parameter should we trust? If we know that topology T1 is true, 
then we would give more credit to the shape parameter obtained with T1. Alternative-
ly, if we know the true shape parameter, we would trust more the topology that yields 
a shape parameter that is the same as the true parameter than other topologies that 
generate a shape parameter that is far from the true value. Such a chicken-egg prob-
lem lands us in an awkward dilemma. 

Note that the first four sites in Fig. 1c are equivalent to a stretch of the alignment 
that has undergone substitution saturation. While phylogenetic information will be 
eroded by substitution saturation and tests have been developed to assess such substi-
tution saturation [20, 21], it is perhaps the first time to link substitution saturation 
directly to phylogenetic bias in the context of missing data. Also note that, although 
sequences in Fig. 1c is biased in favor of grouping S1 and S2 together, one can easily 
envision scenarios in which S1 and S2 would repulse each other, e.g., when the last 32 
sites in Fig. 1c are far more variable than the first seven sites. Thus, the direction of 
the bias cannot be predicted before data analysis. 
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Lemmon et al. [7] speculated that the bias they observed from simulated sequences 
with missing data may be associated with model misspecification. While there is pos-
sibility for such an association, the results I have presented show that the bias can be 
entirely independent of model misspecification. 

The bias associated with missing data and rate heterogeneity among sites has been 
noted for a long time. For example, the 18S rRNA sequences contain the variable and 
conservative regions. Missing a variable region or a conservative region by a subset of 
sequences leads to distortion of phylogenetic signals and wrong phylogenetic trees 
[22, 23]. Dramatic rate heterogeneity among the three codon positions [24, 25], or 
among genes located in different DNA strands [27, 28] have long been noted. As 
among-site rate variation is not only common in molecular sequence data but also a 
known source of phylogenetic bias [19], one should be cautious to compile such data 
with missing data configuration similar to that in Fig. 1c. As a precaution against such 
bias, some computer programs, e.g., DAMBE [29], deletes sites containing missing 
data before likelihood analysis. 

One may not consider this as a serious problem because, among all those compiled 
supermatrices in recent publications [e.g., 1, 2, 3], closely related species tend to share 
genes (or lack of genes). If we take the data in Fig. 1b as a simple caricature of the 
supermatrices, S1 and S2 are more likely to be closely related to each other, so are S3 
and S4, in real data compilations. This means that the bias above caused by missing 
data will tend to help recover the true topology or increase the bootstrap support of 
some true subtrees. This may well have contributed to the increased bootstrap values 
documented before by Cho et al. [11] who then have argued for the supermatrix ap-
proach based on increased bootstrap values for certain taxa. Such an argument is 
flawed. We may recall an analogous case in the maximum parsimony method, with 
the inconsistency caused by long-branch attraction. Closely related species generally 
are more likely to share long branches than remote species, so long-branch attraction 
could seem a good thing because the bias it causes may lead to more efficient recover-
ing of the true tree or increase bootstrap support for some true subtrees. However, 
such increased efficiency in recovering the true tree or increased bootstrap support for 
some true subtrees is purchased with illegal phylogenetic currency and should always 
be discouraged. In statistical estimation, a bias is a bias and is always undesirable 
because it often renders results unpredictable. It is fortunate that there has been only 
one case in which a phylogenetic approach is justified by its bias/inconsistency [30]. 

In summary, many supermatrices laden with missing sequences have been com-
piled in recent years while few studies have been carried out on the potential statistic-
al bias that such data may cause. While the likelihood method handles missing data in 
a sensible way, its implementation may not achieve sufficient precision and may 
cause phylogenetic bias induced by missing data. In particular, lumping genes with 
different evolutionary rates runs a high risk of distorting phylogenetic signals and 
likelihood values and should be strongly discouraged. 
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