
computation

Review

Self-Organizing Map for Characterizing
Heterogeneous Nucleotide and Amino Acid
Sequence Motifs

Xuhua Xia 1,2 ID

1 Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada;
xxia@uottawa.ca; Tel.: +1-613-204-2347

2 Ottawa Institute of Systems Biology, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada

Received: 19 July 2017; Accepted: 25 September 2017; Published: 26 September 2017

Abstract: A self-organizing map (SOM) is an artificial neural network algorithm that can learn from
the training data consisting of objects expressed as vectors and perform non-hierarchical clustering to
represent input vectors into discretized clusters, with vectors assigned to the same cluster sharing
similar numeric or alphanumeric features. SOM has been used widely in transcriptomics to identify
co-expressed genes as candidates for co-regulated genes. I envision SOM to have great potential
in characterizing heterogeneous sequence motifs, and aim to illustrate this potential by a parallel
presentation of SOM with a set of numerical vectors and a set of equal-length sequence motifs.
While there are numerous biological applications of SOM involving numerical vectors, few studies
have used SOM for heterogeneous sequence motif characterization. This paper is intended to
encourage (1) researchers to study SOM in this new domain and (2) computer programmers to
develop user-friendly motif-characterization SOM tools for biologists.
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1. Introduction

A self-organizing map or SOM [1] is a grid of artificial neurons that are used to learn patterns
from training data and use the learned pattern to perform non-hierarchical clustering to represent
input vectors as discretized clusters, with vectors in the same cluster sharing similar features. It is used
extensively in analyzing transcriptomic data, especially with gene expression measured over a number
of time points [2–7]. While SOM has almost always been presented as a non-hierarchical clustering
method for numerical vectors (e.g., [1] and pp. 231–250 of [8]), it theoretically can be adapted to any
set of objects from which a pairwise distance between two objects can be computed. Thus, it should
be applicable for fixed-length strings such as nucleotide or amino acid sequences. For example,
the Kozak consensus [9,10] as a motif signal for ribosomes to locate mammalian translation start
codon is often represented as a 7mer (RccAUGG). Similarly, 5′ and 3′ splicing sites are typically
represented as exon-intron junctions with m nucleotides on the exon side and n nucleotides on the
intron side, with a fixed length of m + n nucleotide per sequence [11,12]. Splice sites are often
heterogeneous, with some for major-class spliceosomes, some for minor-class spliceosomes, and some
for splicing by special mechanisms. For example, the transcript of yeast gene, HAC1, is processed by a
non-spliceosomal splicing mechanism [13–16], and splice sites of HAC1 introns are drastically different
from those of regular introns [11]. One may use SOM to characterize these heterogeneous splice sites,
quantify similarities among them, and potentially discover new type of introns. Several studies have
demonstrated the values of using SOM to characterize sequence motifs [17–22], but their efforts do not
seem sufficiently appreciated by biologists. Given the many advantages of SOM over conventional
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clustering [1], biologists should gain a new perspective on the relationship among sequence motifs
through the SOM extension in this paper.

SOM involves setting up a grid of artificial neurons, initializing them either with random values
or with values from routine multidimensional scaling methods such as PCA, computing a distance
(or similarity) between an input vector and each neuron to identify the winning neuron (which has the
shortest distance or greatest similarity to the input vector), revising the features of the winning neuron
and its neighbors as a learning process, and continuing with other input vectors until the process is
converged (i.e., when the vector values of neurons no longer change). Such a trained SOM can then be
used to classify input vectors that are not in the training data.

There are various ways of applying SOM to motif characterization, with the main difference
among them being the measurement of distance/similarity between a SOM node and an input motif.
I present this new extension of SOM in parallel with the familiar SOM application involving numerical
vectors. In this way, the readers will find it easy to understand SOM with sequence motifs as input.

2. Distance or Similarity between Two Vectors

A key element in SOM is to compute a distance or similarity between two vectors, one representing
the neuron and the other representing the input. For input with numeric vectors, the neuron is also a
numeric vector, and there are many distances defined between two numeric vectors [7]. For vectors x
and y in N-dimensions, one of the simplest distances is the Euclidean distance (d) defined as

d =

√√√√ N

∑
i=1

(xi − yi)
2 (1)

For SOM on fixed-length sequences, the neuron will be represented either by a sequence or a set
of sequences. I present two candidate distances, one for homologous input sequences and one for
non-homologous input sequences.

2.1. Distance for Homologous Input Sequences

For homologous input sequences, one may use evolutionary distances derived from substitution
models such as JC69 [23], K80 [24], F84 [25,26], HKY85 [27], TN93 [28], and GTR [29,30] models.
Distances derived from these models are respectively referred to as JC69 distances, K80 distances, and
so on. Each of these distances can be estimated by either independent estimation (IE) or simultaneous
estimation (SE). IE uses information in two sequences only, and SE uses information in all pairs of
sequences [31,32]. As many biologists, including some practising phylogeneticists, are unaware of the
difference between IE and SE methods, I offer a numeric illustration of these two estimation methods
by using data in Table 1 and the K80 model.

The K80 model has two parameters which can be expressed either as αt and βt, or as D and κ,
where D is evolutionary distance that we are interested in. The expected proportions of transitions
and transversions between the two sequences, designated by E(P) and E(Q) and expressed in D and κ,
respectively, are

E(P) = 1
4 + 1

4 e−
4D

κ+2 − 1
2 e−

2D(κ+1)
κ+2

E(Q) = 1
2 −

1
2 e−

4D
κ+2

(2)

Suppose we have three aligned sequences, S1, S2, and S3, with sequence length of L (=100).
The observed number of sites with transitional and transversional differences are shown in Table 1.
For IE estimation, one simply substitutes E(P) and E(Q) in Equation (2) by the observed P and Q
(which equal Ns/L and Nv/L, respectively (Table 1), and then solves for D and κ. Note that D cannot
be estimated between S1 and S3 by this IE approach (Table 1).

For the SE method with K80 distances, we assume the same κ but different Dij (i.e., D12, D13,
and D23) and maximize the following lnL
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ln L = Ns.12 ln[E(P12)] + Nv.12 ln[E(Q12)] + Ni.12 ln[1− E(P12)− E(Q12)]

+Ns.13 ln[E(P13)] + Nv.13 ln[E(Q13)] + Ni.13 ln[1− E(P13)− E(Q13)]

+Ns.23 ln[E(P23)] + Nv.23 ln[E(Q23)] + Ni.23 ln[1− E(P23)− E(Q23)]

(3)

We take partial derivative of lnL with respect to D12, D13, D14, and κ, set them to zero and solve
the four simultaneous equations for the four unknowns. This leads to κ = 6.2385 and the three Dij
values shown in Table 1. There is no problem for the SE method to estimate D13 which was not
possible with the IE method. SE distances were implemented in DAMBE [33,34] as MLCompositeF84,
MLCompositeTN93. For SOM, this κ is estimated from all sequence pairs and does not change during
the learning process.

Table 1. Observed number of sites between two sequences that are (1) identical (Ni), (2) different
by a transition (Ns), and (3) different by a transversion (Nv) from pairwise comparisons among
three sequences (S1, S2, and S3) of length 100. Independently estimated K80 distances (DIE) and
simultaneously estimated K80 distances (DSE) from the maximum likelihood (ML) framework are
included. Note that K80 distance cannot be computed for S1 and S3 using independent estimation
method (labelled as ‘inapplicable’).

Seq. Pair Ns Nv Ni DIE DSE Seq. Pair

S1 vs. S2 9 4 87 0.1451 0.1464 S1 vs. S2
S1 vs. S3 40 30 30 Inapplicable 2.0915 S1 vs. S3
S2 vs. S3 20 10 70 0.4024 0.4116 S2 vs. S3

An alternative, and simpler, approach is simply to use the alignment score as a similarity index.
Alignment score can be obtained from either global or local alignment by dynamic programming,
or by local string-matching algorithms such as BLAST and FASTA, the latter having been used in
SOM for motif characterization [22]. In addition to fixed-length string, SOM has also been used with
variable-length strings [35,36]. Such studies reduce sequences into word frequencies (e.g., trinucleotide
frequencies) so that each sequence, regardless of its length, is represented as a fixed-length vector for
use with conventional SOM. The distances derived from these non-model-based approaches do not
correct for multiple substitutions and are not expected to increase linearly with time. For this reason,
they are not appropriate for molecular phylogenetics. For unaligned sequences of different lengths,
PhyPA [37] is statistically sound and rivals the maximum likelihood method in phylogenetic accuracy
when highly divergent sequences are involved.

2.2. Distance for Non-Homologous Sequences

The input sequences used in SOM for motif characterization typically are not homologous.
For example, splice sites of introns mentioned before share similarities but are typically
non-homologous. In such cases, a position weight matrix (PWM, [38–40]), numerically illustrated in
detail [41], is often used to represent a SOM neuron [17–20]. I will illustrate the PWM approach in
conjunction with the SOM algorithm. The shortcoming in PWM is that it does not take site-dependence
into account. In contrast, Markov models can overcome this problem ([8] pp. 110–114) and have been
used in conjunction with SOM [21].

Various other distance/similarity measures have been used for sequence motifs in the SOM
context. The simplest ones use word frequencies (e.g., dinucletide, trinucleotide, or longer
oligonucleotide frequencies, [35,36,42]). Nucleotide motifs can also be codified into a 3D entity
and Euclidian distance can be computed between two such recoded motifs [43,44].

Lorenzo-Redondo et al. [44] mapped each nucleotide to a tetrahedron in which the four vertices
are occupied by four nucleotides so that a nucleotide can be represented as {x, y, z}. A nucleotide
sequence of length L can then be represented as {x1, y1, z1, x2, y2, z2, . . . , xL, yL, zL}, making it easy
to compute a distance between two sequences of the same length. The tetrahedron could be shaped
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in such a way that the distance between A and G, and that between C and T, are smaller than that
between a purine and a pyrimidine to accommodate the frequently observed transition bias where
observed number of transitions can be nearly 80 times of the observed number of transversions [45].
Delgado et al. [43] used exactly the same approach to convert a sequence to a vector.

One may also use alignment scores derived from BLAST or FASTA, with the latter having been
used in the SOM context [22]. FASTA algorithms with different word lengths for local string matching
have been illustrated in detail before ([8] pp. 1–22).

Regardless of what distance/similarity one may use for fixed-length strings, the underlying
SOM algorithm is the same. In what follows, I will illustrate the approach with PWM. The software
SOMBRERO [18,19] implements SOM with PWM.

3. The Algorithmic Details of Self-Organizing Map (SOM)

3.1. Training Data

Training SOM with a set of numeric vectors has been illustrated in detail before ([8] pp. 231–250).
Suppose that we have 150 genes whose expression is measured at seven time points, so an input
vector could be {2, 1, 34, 37, 3, 2, 66}. For using SOM with sequence motifs, suppose we have a set of
150 nucleotide sequences of a length of 7.

3.2. SOM Grid Size and Initialization

We first need to decide the size of SOM, i.e., the number of nodes (neurons) to have and whether
the nodes should be arranged in one dimension, two dimensions, or a higher number of dimensions.
Most SOMs use a two-dimensional grid of nodes. Choosing the right number of nodes may be tricky.
Too many nodes increase computation and may not achieve sufficient data reduction/simplification,
but too few nodes may not provide sufficient fit to the data. The minimum is to have two nodes, which
leads to binary classification, i.e., the input vectors will be assigned to one of the two nodes. The rule
of thumb is to use the following equation to determine the number of nodes in SOM

Nnode = 3
√

Nin (4)

where Nnode is the number of nodes in SOM rounded to integer, and Nin is the number of input vectors.
After the first run, one may decide to increase or decrease Nnode depending on how well the trained
SOM fits the input data. We increase the number of neurons to improve the fit to the input data.
For our data with 150 sequences, Nnode = 36.7, so we may just use 36 nodes in a 6 × 6 configuration.

If we work with a set of numerical vectors, we would generate 36 random vectors for the 36 nodes
as initial values. These nodes will change with the training process. For fixed-length nucleotide
sequences, we will generate 36 random sequences of length 7 (same length as input sequences),
with each nucleotide drawn randomly from the pool of nucleotides with frequencies being the same
as that of the pooled input sequences. Table 2 (a) shows one such randomly generated sequence,
together with the position weight matrix (PWM) derived from the sequences (Table 2 (b)). Each element
in PWM is

PWMi,Si = log2

(
Pi,Si

PS

)
(5)

where i is site index (=1, 2, . . . , 7), Si is the nucleotide (A, C, G, or T) at site i, Pi,Si is the site-specific
frequency of Si at site i, and PS is the background frequency of S. PS values are typically the
pooled frequencies from all input sequences, but can also be specified in different ways for different
purposes [41]. Most SOM programs with this approach would demand that the user input background
frequencies which could include not only 4 nucleotide or 20 amino acid (AA) frequencies, but also
dinucleotide and trinucleotide frequencies or di-AA frequencies. For example, SOMBRERO [18,19],
which is such a SOM program, would ask use to input a file containing these frequencies.
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PWM in Table 2 (b) is computed after adding a pseudocount of 0.01 to each cell in Table 2 (a), with
the background frequencies being 0.3, 0.2, 0.2, and 0.3 for A, C, G, and T, respectively. The pseudocount
is necessary to avoid taking logarithm of zero. Note that we have 36 nodes, with each node represented
in the form of Table 2. The same binary coding of sequences has been used in several previous
studies [17–20,46,47].

Table 2. A matrix representation of sequence “ACCGTTA” (a). The resulting position weight matrix (b)
is obtained after adding a pseudocount of 0.01 to each cell in (a), with background frequencies being
0.3, 0.2, 0.2, and 0.3 for A, C, G, and T, respectively.

(a) 1 2 3 4 5 6 7

A 1 0 0 0 0 0 1
C 0 1 1 0 0 0 0
G 0 0 0 1 0 0 0
T 0 0 0 0 1 1 0

(b)

A 1.695 −4.963 −4.963 −4.963 −4.963 −4.963 1.695
C −4.379 2.280 2.280 −4.379 −4.379 −4.379 −4.379
G −4.379 −4.379 −4.379 2.280 −4.379 −4.379 −4.379
T −4.963 −4.963 −4.963 −4.963 1.695 1.695 −4.963

3.3. Update SOM

SOM is updated for each input vector or input sequence motif, and the updating involves three
steps. The first is to identify the winning node for the input. The second is for the winning node to
learn from the input. The third is for the neighbors of the winning node to learn from the input. This
learning process continues until input vectors or sequence motifs result in negligible learning by SOM.

3.3.1. Identify the Winning Node

For input with numeric vectors, we compute the distance (e.g., Euclidean distance) between an
input vector and each of the 36 node vectors, and the node with the smallest distance (or largest
similarity index) to the input vector is the winning node and will learn from this input vector.
Identification of the winning node with fixed-length nucleotide sequences is the same in principle
but differs in operational details. Suppose our input sequence is “GCCATTA”. We need to compute a
distance or a similarity between this input sequence and each of the 36 nodes. We will use a similarity
index called PWM score (PWMS) defined as

PWMS =
7

∑
i=1

PWMi,Si (6)

Given the input sequence of “GCCATTA”, the PWMS from the PWM in Table 2 (b) is

PWMS = PWM1,G + PWM2,C + . . . + PWM7,A ≈ 0.3016 (7)

Note that PWMS is a similarity index. The larger the PWMS, the more similarity between the
input sequence and the node. As we have 36 nodes, we need to compute 36 PWMSs to find the winning
node which is the one with the largest PWMS. Also note that the input sequences do not need to be of
the same length but need to be at least as long as the node site dimension. Take nucleotide frequencies
for example. If the node is represented as a 4 × 7 matrix, then the input sequence should be at least
seven bases long. Longer input sequences are fine because we can scan the input sequence with a
sliding window of seven—i.e., we obtain PWMS1 for sites 1–7, PWMS2 for sites 2–8, and so on—and
use the largest PWMSi as the similarity between the input sequence and the node.
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3.3.2. Learning by Revising the Winning Node and Its Neighbors: Numeric Vectors

The winning node and its neighbors will learn from the input vector through the following
learning function

wi
′ = wi(1− α) + piα (8)

where wi refers to values in the winning node’s vector, and pi refers to values in the input vector.
One could devise alternative learning functions different from that specified in Equation (8).

The α parameter in Equation (8) is the learning rate. An α equal to 0 implies wi
′ = wi, which means

that the winning node does not learn from the input vector and will never change. An α equal to 1
implies wi = pi, which means that the winning node cannot retain any learned knowledge and will
always mirror the features of the input vector. Thus, the α value should be greater than 0 but smaller
than 1. In practise, α will initially be large (close to 1), but will diminish with each iteration.

The wi
′ values will replace the original wi values of the winning node, which completes the

update of the winning node. The next step is to modify the neighbors of the winning node because the
neighboring nodes will also learn from the input vector. Updating the values of neighbors is governed
by the following learning function

wi
′ = wi(1− αn) + piαn (9)

where αn is the learning rate for the neighbors. Again, one can use one of many possible alternative
learning functions, but we will just use Equation (9) to keep things simple.

In practice, the learning function of neighbors depends on how we define neighbors, and αn will
be larger for immediate neighbors than for remote neighbors. For obvious reasons, they should also
be smaller than α. If we designate αn1 as the learning rate for the immediate neighbors (i.e., nodes in
physical contact with the winning nodes), αn2 as the learning rate for the neighbors of the immediate
neighbors, and so on, then one simple way of choosing αn values is to set αn1 = α/2, αn2 = αn1/2,
and so on.

For our illustration, we will just define each node to have a maximum of four neighbors, i.e., the
one to its left, the one to its right, the one above it, and the one below it. Thus defined, we need only
one αn value which we will set to α/2. A winning node in a corner will have only two neighbors, with
one above it and one to its right. We repeat this with decreasing α and αn values with each cycle of
iteration until α equals a preset αmin > 0 (We do not want to decrease α to zero because SOM will stop
learning when α = 0).

How should we decrease α and αn with each cycle of updating? There is no optimal way of
decreasing α. In my SOM implementation in AMIADA [7], I used the following equation

Q = (1− 1
Nv

) (10)

where Nv is the number of input vectors. In our case, Nv = 150 and Q = 0.9933, i.e., α will be multiplied
by Q after each cycle of iteration.

Continuing the learning process will eventually lead to convergence, i.e., when the values in the
nodes do not change any more or the change is smaller than a pre-fixed small value in two consecutive
cycles of iteration. This final set of nodes is a trained SOM. Different nodes in the final trained SOM
have different properties reflecting our data structure. For example, some vectors may have high
values, some low values, some increasing with time (if the vector values represent measurements at
specific time points), some decreasing with time, etc.

The trained SOM can now be used for classification. During the classification stage, the node
values do not change. An input vector is assigned to a node if its distance is the smallest to this node
which is often referred to as the host node of the input vector. However, before we use the trained
SOM to do the classification of new genes, it is crucial to check how well the SOM fits the training data.
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This is typically done by first assigning the input vectors to their host nodes, and then computing the
distance (or its square) between each gene and its host node.

3.3.3. Learning by Revising the Winning Node and its Neighbors: Fixed-Length Sequences

The handling of fixed-length nucleotide sequences is the same in principle as numeric vectors.
Suppose that the input sequence is “GCCATTA” and the winning node is the one in Table 2 (a), then
we simply add the new sequence to the original to obtain Table 3 (a), with the corresponding new
PWM shown in Table 3 (b). Thus, the winning node, starting from a random sequence, will change
to become a sequence profile with site-specific frequencies depending on the input sequences. Its
PWM will depend on the changing site-specific frequencies and the constant background frequencies.
For updating the neighboring nodes, we simply modify them by adding half of the input sequences,
i.e., 0.5G, 0.5C, and so on. The rest of the computation is the same as with numeric vectors as input.

Table 3. Updating the node in Table 2 (a) by the new input sequence “GCCATTA” and the resulting
position weight matrix (PWM) obtained in (b) after adding a pseudocount of 0.01 to each cell in (a).

(a) 1 2 3 4 5 6 7

A 1 0 0 1 0 0 2
C 0 2 2 0 0 0 0
G 1 0 0 1 0 0 0
T 0 0 0 0 2 2 0

(b)

A 0.723 −5.935 −5.935 0.723 −5.935 −5.935 1.716
C −5.350 2.301 2.301 −5.350 −5.350 −5.350 −5.350
G 1.308 −5.350 −5.350 1.308 −5.350 −5.350 −5.350
T −5.935 −5.935 −5.935 −5.935 1.716 1.716 −5.935

4. The Fit of SOM to Input Data

Measuring the fit of SOM to the input data has an easy side and a difficult side. The easy side
is to characterize the deviation of each input vector to the node vector. This can be measured by
Kohonen’s quantization error [1] or by the conventional residual sum of squares (RSS). Such deviations
between input vectors and SOM nodes can be reduced by increasing the grid size of SOM at the risk of
overfitting. There are model selection protocols [48] that can help determine the optimal SOM grid
size. The difficult side is to characterize the “data configuration” and the “SOM configuration” [49–51].
Specifically, what information is lost when reducing the multi-dimensional data to two dimensions in
a typical SOM grid, and which dimension has lost significant information?

One approximation to this problem is the topographic product [50] based on a simple rationale.
That is, if pairs of points are the closest to each other in the original multidimensional space, and if they
are also mapped to the same (or neighboring) SOM nodes, then at least the neighborhood relationship
is preserved. Operationally, if pairwise distances of points in the original multi-dimensional
space correlate highly with pairwise distance of points mapped to the SOM nodes, then the
mapping is good, otherwise it is not. Topological measures based on this rationale are termed
the ‘neighborhood preserving approach’ [52–54]. SOM performs well in preserving neighborhood
relationships [1]. However, this neighborhood preservation approach is associated with two types of
uncertainties. The first is how well a particular characterization of neighborhood relationships—e.g.,
the neighborhood function expressed in Equation (4) in Villman [54]—captures the true neighborhood
relationships. The second is how well neighborhood relationships can summarize the global topology.
Increasing SOM dimension from a 2-D grid to higher dimensions will preserve neighborhood
relationships better [49] but this is somewhat self-defeating because the main objective of SOM
is to visualize spatial relationships in low-dimensions.
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Assuming that data topology is well represented by SOM, Kaski and Lagus [51] further developed
an index for measuring similarity in topology between two data sets. The rationale can be simplified
as follows. Suppose we train and map data set 1 to SOM1 of size (m, n) and designate the number of
data points mapped to SOM1 nodes as N1,1, N1,2, . . . , N2,1, N2,2, . . . , Nm,n. We can now map points in
data set 2 to SOM1 nodes and obtain another set of Ni,j values for data set 2. The correlation between
the two sets of Ni,j values is a measure of topological similarity between the two data sets. We can also
start with data set 2, and train and map the data points to SOM2, and then use SOM2 to obtain two
sets of Ni,j values and compute their correlations. Such a topological similarity index has a simple
interpretation. For example, if our two data sets are transcription factor binding sites from human and
mouse, and we found nearly perfect correlation in Ni,j values between the two data sets, then we may
conclude that gene regulation mechanisms are nearly identical between the two mammalian species.

All these developments are interesting, but their significance to biologists is not clear. Most
computational methods adopted by biologists are simply by trial and error and not by mathematical
justification. In the case of SOM, mathematical justification is difficult anyway [55]. Computational
methods in biology are filtered by ‘natural selection’, i.e., methods generating biological insights are
preserved and those not are eliminated.

5. Software Implementing SOM with PWM

The software tools implementing SOM with the PWM approach are already available,
e.g., SOMBRERO [18,19]. Note that SOMBRERO is different from SOMbrero [56] which is an R
package for SOM but does not deal specifically with sequence motif discovery and characterization.
There are several other papers reporting SOM implementation involve PWM or variations of PWM,
e.g., SOMEA [21], READ [47], and READCSF [46], but I was not able to find a working program.

6. Conclusions

SOM is a versatile neural network algorithm that can be used in a wide variety of biological data
analysis. My illustration of its application for characterizing fixed-length sequences should pave the
way for using SOM to analyze a variety of sequence motifs involved in gene regulation, facilitating the
identification of new drug targets.
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