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Active Research Areas
1. Bioinformatics

 Prediction of protein structure, PTM, function, interaction

 ChIP-chip/Mutation Spectrum Analysis

 miRNA prediction in unannotated species

2. Hardware acceleration of scientific computing

 GPGPU, heterogeneous multicore, manycore

 Proteome-wide analysis, real-time mass spectrometry

 Real-time patient monitoring using stream processing

3. Assistive devices for disabled and elderly

 Promote independent living



CU “Wet Lab” Collaborations
 Ashkan Golshani/Alex Wong/Frank Dehne/Kyle Biggar: 

PIPE, PIPE-Sites, SNP-PIPE, InSIPS

 Jeff Smith: real-time mass spec.

 Bill Willmore/Kyle Biggar: PTM (hydrox., Kme) prediction

 Ken Storey/Kyle Biggar: miRNA prediction in unannotated

species

 Ashkan Golshani: image processing for functional 

genomics, PTM (sumoylation) prediction

 Maria DeRosa (et al): Computational aptamer design

 Carole Yauk (et al): ChIP-chip analysis for THR

 Paul White/Francesco Marchetti: NGS for MSA

 Susan Aitken: Comparative genomics
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Bioinformatics

 Biology is becoming an information science
 You can go on the web and download the entire 

human genome in a text file.

 High-throughput tests examine 1000’s of molecules 
simultaneously  BIG data!

 In Bioinformatics, we apply computational 
techniques to help biologists conduct 
biomedical research

 Machine Learning is a computational tool that 
can be applied to a set of solved examples to 
generalize to new data.

 Automation (high-througput)

 Cost savings (pre-screen before bio validation)

 Suggest future biological experiments
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Seminar Goals

 What is pattern classification?

 Why do you need pattern classification?

 Understand the structure of a pattern classification system

 How to evaluate classification accuracy

 Case studies from current collaborations

 PIPE

 PTM prediction

 miRNA prediction

 Other projects from our lab (time permitting)
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Machine Perception
 Humans naturally recognize patterns

 These are all extremely difficult for a machine!

 Build a machine that can recognize patterns. e.g.:

 Speech recognition

 Fingerprint identification

 Optical Character Recognition

 DNA transcription factor binding sites

 Gene identification

 Protein structure, interaction, function prediction

This example and several illustrations in these slides are taken from 
Duda, Hart, and Stork, Pattern Classification, 2nd Edition, Wiley, 2001
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An Example – fish sorter

 “Sorting incoming Fish on a conveyor 

according to species using optical sensing”

Sea bass

Species

Salmon
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 Problem Analysis

 Set up a camera and take some sample images to 

extract features

• Length

• Lightness

• Width

• Number and shape of fins

• Position of the mouth, etc…

 May be continuous, nominal/categorical, ordinal

 We may use only a subset of these features in our 

classifier!

An Example – fish sorter
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 Preprocessing

 Use a segmentation operation to isolate fishes 

from one another and from the background

 Feature extraction

 Information from a single fish is sent to a feature 

extractor whose purpose is to reduce the data by 

measuring certain features

 The features are passed to a classifier 

An Example – fish sorter
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An Example – fish sorter
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Classification

 Get some prior information:

• Told that salmon are generally shorter than sea bass

 Select the length of the fish as a possible 

feature for discrimination

An Example – fish sorter



12

Histogram of fish length

L*, Optimal decision boundary placement
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 Although, on average, salmons are 

shorter than sea bass, length is a 

poor feature alone!

 Try selecting lightness as a possible 

feature.

An Example – fish sorter
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Histogram of fish lightness

x*, Optimal decision boundary placement



15

No single feature provides a good 

separation of the two fish types (classes)

 Try combining multiple features:

 Adopt the lightness and add the width of the 

fish

Fish xT = [x1, x2]

Lightness Width

A new feature vector

The real object ‘fish’ is now

represented by a feature vector
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Scatter plot of fish width vs. lightness
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We might add other features that are not 

correlated with the ones we already have. 

 A precaution should be taken not to reduce the 

performance by adding “noisy features”

We need to be careful of our “complexity”:

Overfitting and generalization
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An ‘optimal’ decision boundary?
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 The central aim of designing a classifier is to 
correctly classify novel input, not just training 

example inputs.  

Issue of generalization!

 Performance on the training data is not always 
indicative of performance on future test data

Overfitting and generalization
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An improved decision boundary?
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The big picture (supervised learning)

 Training

 Collect some training samples where the class is known

 Make some measurements to extract features

 Train a classifier using measured features and known class

 Testing

 Evaluate the accuracy of the classifier on test data that was 

not used to train the classifier.

 Operation

 Ultimately, system will work for NEW data

 i.e. examine features for a new sample, guess at class
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Predicted

Class

The big picture (supervised learning)

 Training:

Measured

Features
Classifier +

Actual

Class

-

+

Training

Data

Feedback information to 

“train” the classifier
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Predicted

Class

The big picture (supervised learning)

 Testing:

Measured

Features
Trained

Classifier
+

Actual

Class

-

+

Testing

Data

Report

Accuracy
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Predicted

Class

The big picture (supervised learning)

Operation:

Measured

Features
Trained

Classifier

Actual

Class

NEW

Data

?
Decision /Action



Unsupervised Learning

Cluster these items:
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Selecting a learning algorithm

 Many forms of pattern classifier are available

 Artificial neural networks, support vector machines, decision 
trees, decision forests, linear discriminant analysis, K-nearest 
neighbour, parallel cascade identification, rule-based systems, 
Bayesian networks, hidden Markov models, genetic algorithms, 
and many more!

 Be wary of claims such as ‘SVMs are the BEST classifier’
 (No Free Lunch Theorem)

 In my experience:

 If your problem is easy, any classifier will work

 If your problem is hard, try a few classifiers

 Find a good toolkit that implements the classifier structure

• Many available for all the methods listed above (e.g. Weka)
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What is the trade-off between computational 

ease and performance?

 How does the algorithm scale as a function of 

the number of features, patterns or categories?

 Starts to be important when you want to search 

an entire genome for a pattern…

Computational Complexity
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Problems of dimensionality

How does accuracy depend on the 

dimensionality of your features?

 The good news:

 More features may increase accuracy

 The bad news:

 The “curse of dimensionality”
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Accuracy, dimension and training 

sample size
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Feature selection
 “If all features have good predictive capabilities, any one of 

many classification methods should do well. Otherwise the 

situation is much less predictable”*

 Some methods will actually do worse with more features

 May be overly sensitive to noisy features

 May overweight redundant features

 Can use feature selection to mitigate these effects

 Choose a subset of features based on merit

*Sholom Weiss and Casmir Kulikowski, Computer Systems That Learn, 

Morgan Kaufmann, 1991.
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Reducing dimensionality

 Several options for reducing dimensionality

 Manually select subset of features

• Can pre-screen individual features for ability to 

discriminate between classes

• Cluster similar/redundant features based on 

covariance

 Automated dimension reduction

• Use a linear combination of features

 Principal Component Analysis

 Fisher’s Linear Discriminant

 Multiple Discriminant Analysis
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Reducing dimensionality

Multiple discriminant analysis example
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Data set partitioning

Goal of pattern classification is to learn 
from training data in order to perform 
accurately over new future data
(generalization)

 Goal 1: Create an accurate classifier 
 need lots of training data

 Goal 2: Estimate accuracy on future data 
 need lots of independent test data
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Goal 1: Effect of Training Set Size

 Three techniques used for ATP protein binding site prediction

Effect of Increasing Training Data
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Goal 2: Need for Independent Test Data
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Goal 2: Need for MANY Test Data
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Data set partitioning

 BUT, most problems have limited samples

 Must decide how many to use for training, 

validation, and testing.

 Want sufficient training data to learn from

 Want sufficient test data to accurately predict 

performance over future data

 Several strategies to maximize use of data

 Hold-out 

 N-fold cross-validation

 Leave-one-out / jackknife 

 Bootstrap
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Testing & reporting results

1. How do we accurately measure and report 
the accuracy of a pattern classifier?

2. How do we objectively compare two 
classifiers over a given problem?

3. How can we predict how well a classifier 
will generalize, given it performance over 
our training data / testing data?
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Measures of classification accuracy

 Confusion table/matrix
 Accuracy

 Sensitivity / recall / true positive rate

 Specificity

 False Positive Rate

 False Negative Rate

 Positive Predictive Value / precision

 Negative Predictive Value

 False Discovery Rate Sensitivity

 Matthews’ correlation coefficient

 F-measure

 G-mean

 Application-specific measures

 Receiver Operator Characteristic Curves
 Area under curve
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Confusion Table

TP FP

TNFN

P
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A (+)

B (-)

A
(+)

B
(-)

Actual Class
 Correct predictions shown in 

green, errors in red.
 Type I errors (or α error, or 

false positive)

 Type II errors (β error, or a 
false negative) 
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Confusion Table

TP FP
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Actual Class Accuracy = (TP+TN) / (TP+TN+FN+FP)

 Sensitivity = Sn = TP / (TP+FN)

 aka ‘recall’, ‘true positive rate’

 Specificity = Sp = TN / (TN+FP)

 False Positive Rate = 1-Sp

 = FP/(TN+FP)

 False Negative Rate = 1-Sn

 = FN/(TP+FN)

 Positive Predictive Value = TP / (TP+FP)

 aka ‘precision’

 Negative Predictive Value = TN / (TN+FN)

 False Discovery Rate = FP / (TP+FP)

 F-measure = harmonic mean of Sn & PPV

 G-mean = geometric mean of Sn&Sp

 None of these measures in isolation can tell us how ‘accurate’ 
the classifier is.



42

Case study: PIPE II
 The challenge:

 Yeast has 6200 proteins in its proteome.

 Every possible pair of yeast proteins could potentially interact.

 Based on biological evidence, it is believed that approx 50K interactions exist in 
yeast.

 Would like to computationally predict from sequence alone whether a given pair 
will interact.

 It is very expensive to verify a prediction experimentally.

 The solution:

 We have developed a classifier which tests a given pair of protein sequences 
and predict whether they will interact in vivo.

 We have reduced the computational complexity to the point where we can run it 
on all 18million pairs.

 Through parameter tuning, we can achieve either:

• 1) High specificity of 99% with medium sensitivity (%50)

• 2) Very high specificity of 99.9% at the cost of a low sensitivity (25%)

 The $1M questions:
• Which parameter set is preferred?

• How many of the predicted interactions are likely to be true interactions?
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Class Imbalance
 Many events of interest are rare

 ~500K interactions among ~250M human protein pairs (1:500)

 40 protein hydroxylation targets with 61 positive N/D and 1,980 

negative (1:32)

 4M non-redundant RNA hairpins; only ~2600 known miRNA in 

MiRBase (<1:1500)

 Problem:

 Classifiers tend to always predict overrepresented class & ignore 

rare class

 Solution:

 Use appropriate performance metrics!

 Random undersampling/oversampling 
• Can also create new data by adding noise to existing data

 Adjusting cost/loss function

• Make errors on rare class more costly
44
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ROC Curves

Tunable decision threshold

Wikipedia Contributors, http://en.wikipedia.org/wiki/Image:Roc-general.png

See http://www.anaesthetist.com/mnm/stats/roc/Findex.htm for a great ROC demo

http://www.anaesthetist.com/mnm/stats/roc/Findex.htm
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ROC Curve

Curve is not necessarily symmetric

Can be informative in setting threshold to 

balance benefit of TP against cost of FP

*

Optimal?
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Area under the ROC Curve

 Area under an ROC curve (AUC) 

summarizes performance of a classifier

 Independent of particular cost function which 

might influence threshold placement

 Ranges from 1 (perfect) to 0 (worst)

• Random = 0.5

 BUT, AUC is just one facet of classifier 

performance. May not be the most important 

one

• E.g. PIPE must perform at one extreme end of the 

curve…



PIPE ROC Curve
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Precision-Recall Curves
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Ratio of 1:250



Precision vs. Prevalence
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𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑃𝑟𝑒𝑐 =
1

1 + 𝑟
𝐹𝑃𝑅
𝑆𝑛



Protein-Protein Interaction

 Valuable for understanding protein function

 Costly to determine experimentally

Myosin-VI

Calmodulin

binding site

51
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PPI Prediction @ CU

 “PIPE”: Protein Interaction Prediction Engine

 Best observed performance at high specificity (99.95%), crucial 

for proteome-wide prediction

 22K known human proteins: still (22K)2 / 2 × 0.05% = 121K false 

positives

 PIPE-Sites: binding sites

 Identifies actual site of protein-protein interface

 Accuracy confirmed using databases of experimentally 

determined binding sites

PIPE,

PIPE-Sites

Pair of query

protein sequences

Known interactions,

sequences

Interaction prediction (yes/no)

Binding sites (amino acid ranges)
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PIPE Detail

53



PIPE Performance
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ROC

Precision-Recall



PIPE: Yeast Global Scan 

 PIPE has been used to do a global scan of yeast:

 29,589 interactions detected (14,438 novel at the time 

of the experiment, some interactions were later 

confirmed by other traditional experiments).

 Using up-to-date data in 2013, a new global scan of the 

yeast genome resulted in ~87,000 PPIs, more than yeast 

was expected to include.
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PIPE: Homo Sapiens Global Scan

 First ever “complete” human 

interactome!

 Other methods can only 

examine ~25% of protein pairs

• Computational complexity 

(PIPE <1s per pair)

• Availability of input features 

(e.g. structure)

 Now applying network 

analysis 

• (e.g. pathways) Homo Sapiens (Human)*

* Image from BrainMaps.org
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PIPE: Global Human Results
 Human genome is believed to code for 20,000–40,000 protein-coding 

genes & contain between 154,000 and 600,000 interactions.

 Online Predicted Human Interaction Database contains 47,221 

interactions involving 10,579 unique proteins (8-31% of estimated 

total).

 We conducted a global scan of all possible human protein pairs which 

resulted in over 170,000 PPIs 4x increase in knowledge

 The experiments were conducted on HPCVL’s Victoria Falls cluster.

 1168 Sun UltraSparc T2+ cores. 

 Total runtime: three months.
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Cross-Organism Predictions
 One of the nice features of PIPE is the ability to predict 

new interactions in one organism by using known 

interactions in another.

 This makes it possible to predict PPI in a newly 

sequenced organism, something most other methods 

can’t do.
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PIPE: Seasonal Allergic Rhinitis (SAR)

 Collaborative project with:

 Department of Pediatrics, Gothenburg 

University, Gothenburg, Sweden.

 The Centre for Individualized Medication, 

Linköping University. Linköping, Sweden.

 Banting and Best Department of Medical 

Research, Donnelly Centre, University of 

Toronto, Toronto, Canada.

 “Hay fever”

 Study to find new biomarkers to identify 

SAR in patients. 

 Results were supported by patient data.
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PIPE: Volvox/Chlamy/Gonium
 Collaborative project with:

 Bradley Olson (Olson Lab, Kansas State)

 Pierre Durand (Wits University, South Africa)

 Jonathan Featherston (Agricultural Research Council, South 

Africa)

 Richard E. Michod (University of Arizona)

 Chlamydomonas (C. reinhardtii)

 Unicellular (undifferentiated cells).

 Goniaceae (G. pectorale)

 Unicellular, but forms colonies.

 Volvocaceae (V. carteri)

 Multicellular.

60

Richard E. Michod, Evolution of individuality during 

the transition from unicellular to multicellular life, PNAS, 2007 



Other Results

 PIPE has also be used to predict interactions 

between organisms and viruses such as:

 Influenza (H1N1)

 HIV

 Hepatitis B, C

 An obstacle to predicting Human-Virus 

interactions is the small number of known 

interactions.

61



PTM Prediction
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PTM Prediction

 Known N/D hydroxylation data limited

 Identified 40 known hydroxylation targets

• dbPTM & literature review

• 22 possess EGF domain, 16 ankyrin repeat domain 

 60 positives sites, 1980 (presumed) negatives

• Extracted windows of ±7 AAs around N/D

• Eliminated duplicate windows: 47+, 1223-

 Trained/evaluated SVM using LOO test

• 92.7% recall; 61.45% precision

 Applied to all 1.3M N/D in human proteins

 Now what?
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PTM Prediction
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PTM Prediction - SVM
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PTM Prediction

 Known N/D hydroxylation data limited

 Identified 40 known hydroxylation targets

• dbPTM & literature review

 60 positives sites, 1980 (presumed) negatives

• Extracted windows of ±7 AAs around N/D

• Eliminated duplicate windows: 47+, 1223-

 Trained/evaluated SVM using LOO test

• 92.7% recall; 61.45% precision

 Applied to all 1.3M N/D in human proteins

 Now what?

66



Active Learning
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1. Collect labelled training data

2. Train a classifier

3. Apply to unlabelled data

4. Select points to validate

5. Perform wetlab validation

6. Add newly labelled samples 

to training data

7. Retrain classifer
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Active Learning
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1. Collect labelled training data

2. Train a classifier

3. Apply to unlabelled data

4. Select points to validate

5. Perform wetlab validation

6. Add newly labelled samples 

to training data

7. Retrain classifer

?
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Active Learning
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miRNA
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Wikipedia Commons



miRNA Prediction

 microPred most widely used miRNA prediction tool

 Trained on human known miRNAs

 Uses 21 features, 5 of which relate to secondary 

structure free energy

• Problem?

 Accuracy evaluated using geometric mean

• What are they failing to account for?

 Tested on other species, sensitivity maintained

• What is missing?

81



Redundant Features
 We observed that specificity of method varied wildly 

• Depended on negative set used (hairpins from 100 random 

coding regions)

 Recall that: 

 Some methods will actually do worse with more features

 May be overly sensitive to noisy features

 May overweight redundant features
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21 Features (easy set)
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Redundant Features
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21 Features (hard set)
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Effect of Class Imbalance

 Batuwida & Palade could achieve either:

However considering class imbalance of 

1000 negatives per positive:
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Sn Sp G-mean Precision

Approach A 83.36% 99.0% 90.84% 7.6%

Approach B 90.02% 97.28% 93.58% 3.2%

Sn Sp G-mean

Approach A 83.36% 99.0% 90.84%

Approach B 90.02% 97.28% 93.58%



 “We validated the microPred predictions on the 

other animal (non-human) and viral pre-miRNAs

published in the miRBase12, and obtained a high 

sensitivity. Out of 6095 other animal pre-miRNAs

across 49 species,microPred identified 5651 

correctly with 92.71% of recognition rate. Out of 

139 viral pre-miRNAs across 12 species, 131 

were predicted correctly with 92.24% of 

recognition rate.”
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Specificity for non-human species
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Our miRNA Prediction Approach

1. Cluster known miRNA from all species

2. Select largest N clusters

3. From each cluster, select representative closest 

to the target species  +ve training

 Use SMOTE to generate synthetic minority data

 Avoid redundant features

4. Get -ve training data from “related” species

 Hairpin regions of known coding regions

5. Apply leave-one-species-out testing

6. Measure performance using precision-recall 
(1000:1 ratio)
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Train: Xenopus Tropicalis

Test: Anolis Carolinensis
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Scanning Mode
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Training 

Data

Test

Data

Wikipedia Commons
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