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Gene expression is regulated by multiple, overlapping networks
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transcriptional
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protein-protein 
interaction

metabolic
miRNA-mRNA 

targeting



“Direct” experimental measurement of networks
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[Soon et al., Molec Sys Biol 2013] [Li et al., Proteomics 2015]



“Direct” experimental measurement of networks

4 / 52

[Soon et al., Molec Sys Biol 2013] [Li et al., Proteomics 2015]

+ Directly (more or less) measures regulatory interactions

− Each only measures one type regulation

− Each experiment measures interactors of one molecular species

⇒ Alternative: Functional or phenotypic network construction



Outline
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• Co-expression networks – linking genes by similarity of expression

– Examples
– Relevance Networks
– ARACNE
– WCNGA?
– Bayesian Relevance Networks?

• Epistasis networks – linking genes by interpreting knockout phenotypes

– Avery & Wasserman’s classical theory
– Data-robust epistasis analysis



Example co-expression network (Prieto et al., PLoS ONE 2008)
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Used microarray expression on 24 human tissues to determine co-expression,
finding 15841 high-confidence relationships between 3327 genes.



Example (Romero-Campero et al., BMC Genomics 2016)
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Based on 50 RNA-seq datasets on 8 genotypes of Chlamydomonas under
different physiological conditions.



Co-expression networks
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Typically, we start with a data matrix measuring the expression of genes under
different conditions.

conditions
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• Main idea: Make a big graph in which
“similarly” expressed genes are connected.

• Could represent one TF regulating another,
or co-regulated genes in a complex / pathway,
or any number of other things . . . .

• The resulting graph can then be inspected /
analyzed to extract biological meaning.

• What does “similar” mean?

• When are two variables similar enough?



Relevance Networks (Butte et al., PNAS 2000)
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Discovering functional relationships between RNA
expression and chemotherapeutic susceptibility
using relevance networks
Atul J. Butte†‡, Pablo Tamayo§, Donna Slonim§, Todd R. Golub§¶, and Isaac S. Kohane†

†Children’s Hospital Informatics Program and Division of Endocrinology, Department of Medicine, Children’s Hospital, 300 Longwood Avenue, Boston, MA
02115; §Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142; and ¶Dana-Farber Cancer Institute, 44 Binney Street,
Boston, MA 02115

Communicated by Louis M. Kunkel, Harvard Medical School, Boston, MA, August 16, 2000 (received for review May 1, 2000)

In an effort to find gene regulatory networks and clusters of genes

that affect cancer susceptibility to anticancer agents, we joined a

database with baseline expression levels of 7,245 genes measured

by using microarrays in 60 cancer cell lines, to a database with the

amounts of 5,084 anticancer agents needed to inhibit growth of

those same cell lines. Comprehensive pair-wise correlations were

calculated between gene expression and measures of agent sus-

ceptibility. Associations weaker than a threshold strength were

removed, leaving networks of highly correlated genes and agents

called relevance networks. Hypotheses for potential single-gene

determinants of anticancer agent susceptibility were constructed.

The effect of random chance in the large number of calculations

performed was empirically determined by repeated random per-

mutation testing; only associations stronger than those seen in

multiply permuted data were used in clustering. We discuss the

advantages of this methodology over alternative approaches, such

as phylogenetic-type tree clustering and self-organizing maps.

potheses of putative functional relationships between pairs of
genes. Specifically, we used baseline RNA expression levels
measured from the NCI60, a set of 60 human cancer cell lines
used by the National Cancer Institute Developmental Thera-
peutics Program to screen anticancer agents since 1989 (8). We
joined the gene expression levels to a database with measures of
cancer susceptibility to anticancer agents, to see how the baseline
RNA expression levels in the cell lines correlated with the
inhibition of growth of these same cell lines to thousands of
anticancer agents. To be clear, RNA expression levels were
measured without any exposure to anticancer agents. As shown
below, this methodology, termed relevance networks, is able to
form clusters without having the problems listed above that are
inherent in other methodologies. A feature of a clustering
technique such as relevance networks, is that it allows us to find
correlations across disparate biological measures, such as RNA
expression and susceptibility to pharmaceuticals.



Their data
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Butte et al. took 60 cancer cell lines as conditions, and used as variables
microarray expression data for 6,701 genes and susceptibility of those lines to
4,991 anti-cancer agents.
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Algorithm outline
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1. Remove variables with “low information content” – e.g., genes that are
almost always on or always off, or have outliers observations

2. For every pair of variables x and y compute Pearson’s (linear) correlation
coefficient across conditions rxy

3. Choose a threshold, τ , to determine statistically significant values of rxy

4. Connect nodes x and y with an undirected edge, if r2xy > τ



1. Removing low-varability variables
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For each variable:

• Discretize min-to-max range into 10 equal-sized bins
Data:

Bins:

• Determine empirical fraction of data in each bin
0.15 0.05 0.10 0.05 0.10 0.10 0.15 0.00 0.15 0.15Fracs:

• Compute the (empirical) entropy

H = −

10
∑

i=1

fi log2 fi

= 3.0710 bits

Remove from consideration 5% variables with lowest entropy



Targeting outliers?
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This especially targets variables with one or a few extreme observations.

0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05

Data:

Frac:

H = 0.2864



2. Compute pairwise Pearson’s correlation coefficients
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Linear correlation between (x1, x2, . . . , xn) and (y1, y2, . . . , yn):

rxy =
Cov(x, y)

√

Var(x)Var(y)
=

∑n
i=1

1

n(xi − x̄)(yi − ȳ)
√

∑n
i=1

1

n(xi − x̄)2
∑n

i=1

1

n(yi − ȳ)2

where x̄ and ȳ are sample means.



What constitutes a “significant” correlation?
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Here’s an idea from computational statitistics – permutation testing. . .

• Suppose you’ve got paired data on two variables, x and y:
x x1 x2 x3 x4 x5 x6 x7 x8
y y1 y2 y3 y4 y5 y6 y7 y8

• Suppose you’ve got any measure of similarity ρ, which assigns a score to
such paired data, ρ(x, y).

• N times, randomly permute the y values and recompute ρ. E.g.:
x x1 x2 x3 x4 x5 x6 x7 x8
y′ y3 y7 y6 y1 y5 y4 y2 y8

• The location of the original ρ(x, y) with respect to the permuted ρ values
gives a p-value.

original

ρ(x,y)

Distribution of 

permuted ρ(x,y') 

values

similarity, ρ

• Approach is agnostic to the data distribution and similarity measure! Still
need to choose a p-value threshold (or FDR). . .



3. Permutation testing to choose a correlation cutoff
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Permute all rows of data matrix 100 times, recomputing pairwise correlations,
and building an empirical distribution.

Data

Permuted data

Choose threshold based on acceptable balance of expected true and false
positives.



4. Link variables with correlations exceeding threshold
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Fig. 2. Relevance networks constructed from the joined databases of baseline gene expression in 60 cancer cell lines and measures of susceptibility of the same

cell lines to anticancer agents. The pairs of features (anticancer agents in green boxes, genes in white boxes) with r̂2 at or greater than ! 0.80 were drawn with

line thickness proportional to r̂2. Features without an association at ! 0.80 were removed. Associations with negative r̂2 are in red. Seven networks are highlighted

in orange and are in Table 1. Large versions of all figures and descriptions for each accession number may be found at http:!!www.chip.org!genomics.

Found 1222 links among
834 genes and anti-cancer agents

in 202 mini-networks



ARACNE (Margolin et al., BMC Bioinfo 2006)
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BioMed CentralBMC Bioinformatics

Open AccessProceedings

ARACNE: An Algorithm for the Reconstruction of Gene Regulatory 
Networks in a Mammalian Cellular Context
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The ARACNE algorithm
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Attempts to answer two “drawbacks” of Relevance Networks:

• Pearson correlation only captures linear relationships

• “Correlations” between variables may be the result of indirect effects

The agorithm:

1. Estimate mutual information MI(x, y) between all variables x and y

2. Choose a signficance threshold τ for MI

3. Link variables with mutual information ≥ τ

4. Remove x− y link if, for some z, MI(x, y) < min(MI(x, z),MI(z, y))



1. Estimate mutual information between variables

20 / 52

• Model joint distribution of x and y with Gaussian mixture model

L(x, y) =

N
∑

i=1

(2πv)−N/2 exp

(

(x− xi)
2 + (y − yi)

2

2v2

)

where i ranges over the N conditions, v is a “bandwidth” parameter.
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1. Estimate mutual information between variables
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• Model joint distribution of x and y with Gaussian mixture model

L(x, y) =

N
∑

i=1

(2πv)−N/2 exp

(

(x− xi)
2 + (y − yi)

2

2v2

)

where i ranges over the N conditions, v is a “bandwidth” parameter.

• Mutual information estimate is then:

MI(x, y) =
1

N

N
∑

i=1

log2
L(x, y)

L(x)L(y)



2. Choose a significance threshold τ
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• Choose 105 random pairs of variables x and y

• For each, permute the y-values, and recompute MI(x, y)

• The fraction of these exceeding any threshold τ is an estimate of the
p-value for MI(x, y) = τ

(If MI(x, y) exceeds any of the random pairs, a p-value is assigned by
extrapolation.)



3. Remove weak links
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The “data processing inequality” says that if we have links x− y, y − z and
x− z, the link with the smallest MI should be removed.

a

The hope is to remove indirect, correlations in favor of direct, “causal” links.

The resulting network is tree- (really, forest-) structured (unless there are ties
for weakest link).



Results on simulated expression data from DREAM
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Steady state data with randomly generated network structures, with randomly
varied production and decay rates.

a b
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WGCNA (Langfelder et al., BMC Bioinfo 2008)
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Some features
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• Uses Pearson (linear) correlation, Spearman rank correlation or biweight
midcorrelation to connect genes

• Functions for “module” detection and graph topology analysis

• Functions for correlating genes or modules to a measured “trait”

• Functions for visualization

⇒ It’s the most cited of all co-expression papers! (2179 as of Oct 15 2017)



Bayesian Relevance Networks (Ramachandran et al., PLoS ONE
2017)
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RESEARCH ARTICLE

Uncovering robust patterns of microRNA co-
expression across cancers using Bayesian
Relevance Networks

Parameswaran Ramachandran1!!, Daniel Sánchez-Taltavull1!, Theodore J. Perkins1,2!

1Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H8L6,

2Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada

K1H8M5

! These authors contributed equally to this work.

! Current address: The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer

Centre, University Health Network, Toronto, Ontario, Canada M5G2M9

* tperkins@ohri.ca

Abstract

Co-expression networks have long been used as a tool for investigating the molecular cir-

cuitry governing biological systems. However, most algorithms for constructing co-expres-

sion networks were developed in the microarray era, before high-throughput sequencing—

with its unique statistical properties—became the norm for expression measurement. Here

we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning

about expression levels to account for the differing levels of uncertainty in expression

measurements between highly- and lowly-expressed entities, and between samples with
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Citation: Ramachandran P, Sánchez-Taltavull D,

Perkins TJ (2017) Uncovering robust patterns of

microRNA co-expression across cancers using

Bayesian Relevance Networks. PLoS ONE 12(8):

e0183103. https://doi.org/10.1371/journal.

pone.0183103



Accounting for varying measurement uncertainty
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• With RNA-seq, miRNA-seq, different samples’ read depths equate to
varying precision of measurement

• With genes’, miRNAs’ different expression levels, relative precision varies

• Propose Bayesian beliefs over expression levels of gene/miRNA in each
sample (Dirichlet, weak non-uniform priors)

• Quantify co-expression by correlation across conditions and beliefs

rBxy =
Covc,u(xc, yc)

√

Varc,u(xc)Varc,u(yc)



Results on 10,999 miRNA-seq samples from TCGA
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!"Relevance and Bayesian

  Relevance Networks differ

!"Nodes included in the

  Bayesian network have

  higher average expression /

  greater confidence and

  replicate better in cross-

  validation



Co-expression networks summary
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• In co-expression networks, the genes whose expression is most similar over
a set of conditions are linked

• Similarity can be assessed in several different ways

• Points in favor:

+ Correlation networks can be computed efficiently
+ Readily visualized
+ Subnetwork inspection leads to new hypotheses
+ Can find true / known relationships, as well as many new ones

• Points against:

− Links are directionless, and of unclear meaning
(Though some directional proposals have been made.)

− Links are established pairwise only
− The networks are not predictive. What if gene x were deleted?

Questions?



Outline
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• Co-expression networks – linking genes by similarity of expression

– Examples
– Relevance Networks
– ARACNE
– WCNGA?
– Bayesian Relevance Networks?

• Epistasis networks – linking genes by interpreting knockout
phenotypes

– Avery & Wasserman’s classical theory
– Data-robust epistasis analysis



What is epistasis?
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Broadly: Epistasis is when deleting/mutating two genes/loci leads to a
“surprising” outcome, when compared each deletion/mutation individually.

E.g., Synthetic lethality, where deleting two genes kills an organism, even
though each individual deletion is harmless (Tong et al., Science 2001)

A subtler form is epistasis as masking, where the deletion of one gene masks
the effect of deleting another.



Avery & Wasserman (Trends in Genetics, 1992)
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Example 1 from A & W – Sex determination in C. elegans
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Example 1 from A & W – Sex determination in C. elegans
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genotype X dose her-1 tra-1 phenotype
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Example 2 from A & W – Apoptosis in C. elegans
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genotype c.d.s ced-3 ced-1 phenotype
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Example 2 from A & W – Apoptosis in C. elegans
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genotype c.d.s ced-3 ced-1 phenotype
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The mystery of epistasis
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Sometimes the epistatic gene is upstream, sometimes downstream.

One gene may activate the other, or may repress the other.

How can we figure this out, based on observing the mutant phenotypes – and
not the expression of the intermediate genes?



Assumptions and inference rules
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Rules in tabular form
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More examples
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Avery & Wasserman key conclusion
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Simple logical rules can tell us when observations of epistasis reveal something
about pathway structure!

• Includes a test for applicability (single deletions influence in just one signal
state)

• Can reveal upstream/downstream & activation/repression between the
two genes



Epistasis analysis cannot distinguish certain pathways
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X Y Z

S Y X Z

S Y X Z
AN
D

input
signal

genetic
pathway

output
trait

All arrows indicate activation, and we observed the trait under all possible
wild type and knockout conditions, we always see the same thing!

(See Phenix et al. (Chaos, 2013) for thorough analysis of identifiability.)



Phenix et al., PLoS Comput Biol 2011
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Quantitative Epistasis Analysis and Pathway Inference
from Genetic Interaction Data

Hilary Phenix1,2, Katy Morin1,3, Cory Batenchuk1,2, Jacob Parker4,5, Vida Abedi1,2, Liu Yang1,2,5,

Lioudmila Tepliakova1,2, Theodore J. Perkins3,4, Mads Kærn1,2,6*

1Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada, 2Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa,

Ontario, Canada, 3Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada, 4Ottawa Hospital Research Institute,

Ottawa, Ontario, Canada, 5Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada, 6Department of Physics, University of Ottawa,

Ottawa, Ontario, Canada

Abstract

Inferring regulatory and metabolic network models from quantitative genetic interaction data remains a major challenge in
systems biology. Here, we present a novel quantitative model for interpreting epistasis within pathways responding to an
external signal. The model provides the basis of an experimental method to determine the architecture of such pathways,
and establishes a new set of rules to infer the order of genes within them. The method also allows the extraction of
quantitative parameters enabling a new level of information to be added to genetic network models. It is applicable to any
system where the impact of combinatorial loss-of-function mutations can be quantified with sufficient accuracy. We test the
method by conducting a systematic analysis of a thoroughly characterized eukaryotic gene network, the galactose
utilization pathway in Saccharomyces cerevisiae. For this purpose, we quantify the effects of single and double gene
deletions on two phenotypic traits, fitness and reporter gene expression. We show that applying our method to fitness traits
reveals the order of metabolic enzymes and the effects of accumulating metabolic intermediates. Conversely, the analysis of
expression traits reveals the order of transcriptional regulatory genes, secondary regulatory signals and their relative
strength. Strikingly, when the analyses of the two traits are combined, the method correctly infers ,80% of the known
relationships without any false positives.

Citation: Phenix H, Morin K, Batenchuk C, Parker J, Abedi V, et al. (2011) Quantitative Epistasis Analysis and Pathway Inference from Genetic Interaction Data. PLoS
Comput Biol 7(5): e1002048. doi:10.1371/journal.pcbi.1002048



The galactose pathway in yeast – a test case
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Experiment
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• We considered two signal states: galactose absent (but another sugar in
the media) and galactose present (at a certain concentration)

• We considered two different quantitative phenotypes: growth rate relative
to wild type, and fluorescence reporter expression driven by Gal10
promoter

• We observed the network in wild type state, and single and pairwise
knockout of every gene



Results of single knockout experiments
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= galactose= no galactose

• With experimental noise, when are two trait measurements identical?

• A & W’s model predicts that a single knockout can only affect the trait in
one of the two signal states



A statistical model accounting for off-pathway,
signal-independent effects
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• Model distinguishes gene absence/presence (X,Y ) from their
signal-dependent activities (XS ,YS)

• Trait depends linearly on Boolean variables S, X, Y , XS , YS

• We use linear regression to fit parameters σS , σX , σY , αX , αY across all
experimental conditions

• Signs of parameters statistically significantly 6= 0 constitute patterns for
pathway inference



More concretely . . .
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h(x,y,s)~h0zaX (1{x)zaY (1{y)zaI (1{x)(1{y)z

sSszsX xS x,sð Þð ÞzsY yS x,y,sð Þð Þ,

s~
1 if the signal is ON

0 otherwise

(

,

x~
1 if X is deleted

0 otherwise

(

,

y~
1 if Y is deleted

0 otherwise
:

(

xS(x,s)~
(1{x)s if S activates X

(1{x)(1{s) if S represses X

(

yS(x,y,s)~
(1{y)xS if X activates Y

(1{y)(1{xS) if X represses Y

(

T T

• Eight choices of “core” pathway structure: X,Y upstream/downstream,
activation/repression for the first two links

• Core pathways that predict T within experimental error are considered
possible explanations

• Extra links depend on whether parameters are significantly + or −
• Predicted X,Y relationships assembled to reconstruct whole network



Results on the galactose network
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from growth data from expression data

• We are largely able to correctly reconstruct the galactose regulatory and
metabolic pathways



Key conclusions of Phenix et al. 2011

51 / 52

Epistasis analysis can be successful on “noisy” quantitative data, even with
there are off-pathway effects, using a more general model

• Standard linear regression techniques account for noise and tell us which
parameters are significant

• Our model separately quantifies signal-dependent and signal-independent
effects of the genes in the pathways



Epistasis analysis conclusions
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• Avery & Wasserman laid the foundation for reasoning about patterns of
traits observed upon gene perturbations, and how pathways can be
reconstructed — but sometimes we cannot infer pathway stucture by this
approach

• Much recent work (by us and many others) has aimed at loosening their
assumptions, to account for noisy, quantitative data, off-pathway effects,
complex phenotypes (e.g. probabilities of activation), etc.

• The hunt is on for ways to overcome the limits of classical (& modern)
approaches to epistasis — e.g. our own work on dynamical epistasis
analysis (Awdeh et al. 2015, 2017)

Questions?
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