E. coli community network
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Gene expression is regulated by multiple, overlapping networks
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“Direct” experimental measurement of networks
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“Direct” experimental measurement of networks

Fractionation /
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QOutline

e (Co-expression networks — linking genes by similarity of expression

— Examples
— Relevance Networks
— ARACNE

- WCNGA?
— Bayesian Relevance Networks?

e Epistasis networks — linking genes by interpreting knockout phenotypes

— Avery & Wasserman's classical theory
— Data-robust epistasis analysis
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Example co-expression network (Prieto et al., PLoS ONE 2008)

Used microarray expression on 24 human tissues to determine co-expression,
finding 15841 high-confidence relationships between 3327 genes.

Human Gene Coexpression Network
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Example (Romero-Campero et al., BMC Genomics 2016)

Based on 50 RNA-seq datasets on 8 genotypes of Chlamydomonas under
different physiological conditions.
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Co-expression networks

Typically, we start with a data matrix measuring the expression of genes under
different conditions.

conditions o
I S S e Main idea: Make a big graph in which
“similarly” expressed genes are connected.

e Could represent one TF regulating another,
or co-regulated genes in a complex / pathway,
or any number of other things . ...

e The resulting graph can then be inspected /
analyzed to extract biological meaning.

e \What does “similar’ mean?

variables (typically genes' expression)

e \When are two variables similar enough?
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Relevance Networks (Butte et al., PNAS 2000)

Discovering functional relationships between RNA
expression and chemotherapeutic susceptibility

using relevance networks

Atul J. Butte'*, Pablo Tamayo$, Donna Slonim$, Todd R. Golub$", and Isaac S. Kohane?

tChildren’s Hospital Informatics Program and Division of Endocrinology, Department of Medicine, Children’s Hospital, 300 Longwood Avenue, Boston, MA
02115; SWhitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142; and "Dana-Farber Cancer Institute, 44 Binney Street,

Boston, MA 02115

Communicated by Louis M. Kunkel, Harvard Medical School, Boston, MA, August 16, 2000 (received for review May 1, 2000)

In an effort to find gene regulatory networks and clusters of genes
that affect cancer susceptibility to anticancer agents, we joined a
database with baseline expression levels of 7,245 genes measured
by using microarrays in 60 cancer cell lines, to a database with the
amounts of 5,084 anticancer agents needed to inhibit growth of
those same cell lines. Comprehensive pair-wise correlations were
calculated between gene expression and measures of agent sus-
ceptibility. Associations weaker than a threshold strength were
removed, leaving networks of highly correlated genes and agents
called relevance networks. Hypotheses for potential single-gene
determinants of anticancer agent susceptibility were constructed.
The effect of random chance in the large number of calculations
performed was empirically determined by repeated random per-
mutation testing; only associations stronger than those seen in
multiply permuted data were used in clustering. We discuss the
advantages of this methodology over alternative approaches, such
as phylogenetic-type tree clustering and self-organizing maps.

potheses of putative functional relationships between pairs of
genes. Specifically, we used baseline RNA expression levels
measured from the NCI60, a set of 60 human cancer cell lines
used by the National Cancer Institute Developmental Thera-
peutics Program to screen anticancer agents since 1989 (8). We
joined the gene expression levels to a database with measures of
cancer susceptibility to anticancer agents, to see how the baseline
RNA expression levels in the cell lines correlated with the
inhibition of growth of these same cell lines to thousands of
anticancer agents. To be clear, RNA expression levels were
measured without any exposure to anticancer agents. As shown
below, this methodology, termed relevance networks, is able to
form clusters without having the problems listed above that are
inherent in other methodologies. A feature of a clustering
technique such as relevance networks, is that it allows us to find
correlations across disparate biological measures, such as RNA
expression and susceptibility to pharmaceuticals.
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Their data

Butte et al. took 60 cancer cell lines as conditions, and used as variables
microarray expression data for 6,701 genes and susceptibility of those lines to

4,991 anti-cancer agents.
60 cancer cell lines

~7000 genes' expression

agent doses

~5000 anti-cancer
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Algorithm outline

1. Remove variables with “low information content” — e.g., genes that are
almost always on or always off, or have outliers observations

2. For every pair of variables = and y compute Pearson’s (linear) correlation
coefficient across conditions 7,

3. Choose a threshold, 7, to determine statistically significant values of rg,

4. Connect nodes x and y with an undirected edge, if rfgy > T
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1. Removing low-varability variables

For each variable:

e Discretize min-to-max range into 10 equal-sized bins

Data: |—¢3K—HHH——IEK IO I

Bins:

e Determine empirical fraction of data in each bin
Fracs: 0.15]10.05]010]0.05| 0.10 | 0.10 ] 0.15] 0.00 | 0.15 | 0.15

e Compute the (empirical) entropy
10
H = _Zfilongi
i=1
= 3.0710 bits

Remove from consideration 5% variables with lowest entropy
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Targeting outliers?

This especially targets variables with one or a few extreme observations.

Data: |—*

Frac:

K>

0.95

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.05

H = 0.2864
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2. Compute pairwise Pearson’s correlation coefficients

Linear correlation between (x1,x2,...,Z,) and (y1,¥y2,...,Yn):

= Cov(z,y) ZZ” 132 = 2) (Y — )
v/ Var(x)Var(y \/Zz (@ = 2)2 300 (v — )

where T and ¥y are sample means.
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What constitutes a “significant” correlation?

Here's an idea from computational statitistics — permutation testing. ..

e Suppose you've got paired data on two variables,  and y:
r | X1 ro X3 X4 I5 g X7 I8
Yyl yr Y2 Ys Y4 Ys Y6 Y1 Y8
e Suppose you've got any measure of similarity p, which assigns a score to
such paired data, p(z,vy).
e N times, randomly permute the y values and recompute p. E.g.:
X L1 ro I3 X4 X5 g X7 I8
Yy |Ys Y7 Y6 Y1 Y5 Y4 Y2 Vs
e The location of the original p(x,y) with respect to the permuted p values
gives a p-value.

Distribution of
permuted p(x,y")
values

original
p(x,y)

similarity, p

e Approach is agnostic to the data distribution and similarity measure! Still
need to choose a p-value threshold (or FDR)...
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3. Permutation testing to choose a correlation cutoff

Permute all rows of data matrix 100 times, recomputing pairwise correlations,
and building an empirical distribution.

Distribution of 1
Hundred million :

A ~ Data
One million | | /| | -
: : 4
10,000 | | : :
| I I
| | |
100 | ; | 1

Count of associations

0.01 Permuted datai

0.0001 '

1 -0.5 0.5 1

->0 -

2

Choose threshold based on acceptable balance of expected true and false
positives.
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4. Link variables with correlations exceeding threshold

2 =2 oF SossESsSsERmmEmsEsss
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Sy Found 1222 links among

e 834 genes and anti-cancer agents
' in 202 mini-networks

Fig.2. Relevance networks constructed from the joined databases of baseline gene expression in 60 cancer cell lines and measures of susceptibility of the same
cell lines to anticancer agents. The pairs of features (anticancer agents in green boxes, genes in white boxes) with 72 at or greater than *+ 0.80 were drawn with
line thickness proportional to /2. Features without an association at + 0.80 were removed. Associations with negative 7 are in red. Seven networks are highlighted
in orange and are in Table 1. Large versions of all figures and descriptions for each accession number may be found at http://www.chip.org/genomics.
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ARACNE (Margolin et al., BMC Bioinfo 2006)

B MC BiOi nformatics BioM\éd)Central

Proceedings

ARACNE: An Algorithm for the Reconstruction of Gene Regulatory
Networks in a Mammalian Cellular Context

Adam A Margolin!2, Ilya Nemenman?, Katia Basso3, Chris Wiggins24,
Gustavo Stolovitzky>, Riccardo Dalla Favera3 and Andrea Califano* 1.2

Address: 'Department of Biomedical Informatics, Columbia University, New York, NY 10032, 2Joint Centers for Systems Biology, Columbia
University, New York, NY 10032, 3Institute for Cancer Genetics, Columbia University, New York, NY 10032, 4Department of Applied Physics and
Applied Mathematics, Columbia University, New York, NY 10032 and >IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

Email: Adam A Margolin - adam@dbmi.columbia.edu; Ilya Nemenman - ilya.nemenman@columbia.edu; Katia Basso - kb451@columbia.edu;
Chris Wiggins - chw2@columbia.edu; Gustavo Stolovitzky - gustavo@us.ibm.com; Riccardo Dalla Favera - rd10@columbia.edu;
Andrea Califano* - califano@c2b2.columbia.edu

* Corresponding author

from NIPS workshop on New Problems and Methods in Computational Biology
Whistler, Canada. |8 December 2004

Published: 20 March 2006
BMC Bioinformatics 2006, 7(Suppl 1):S7  doi:10.1186/1471-2105-7-S1-S7
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The ARACNE algorithm

Attempts to answer two “drawbacks” of Relevance Networks:

Pearson correlation only captures linear relationships

“Correlations” between variables may be the result of indirect effects

The agorithm:

1.

2
3.
4

Estimate mutual information M1 (x,y) between all variables x and y
Choose a signficance threshold 7 for M1

Link variables with mutual information > 7

Remove = — y link if, for some z, MI(z,y) < min(MI(x,z), MI(z,y))
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1. Estimate mutual information between variables

Model joint distribution of  and y with Gaussian mixture model

N 5 Y
L(m,w:z@m)—wze}(p(@—wi) +(y — ) )

: 202
=1

where ¢ ranges over the N conditions, v is a “bandwidth” parameter.
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. Estimate mutual information between variables

Model joint distribution of  and y with Gaussian mixture model

N

L(z,y) =3 (2m0) N/ exp <(x — i)+ (y — i) )

: 202
=1

where ¢ ranges over the N conditions, v is a “bandwidth” parameter.

Mutual information estimate is then:

L(z,y)
(

1 N
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. Choose a significance threshold 7

Choose 10° random pairs of variables z and y
For each, permute the y-values, and recompute M I(z,y)

The fraction of these exceeding any threshold 7 is an estimate of the
p-value for MI(x,y) =7

(If MI(x,y) exceeds any of the random pairs, a p-value is assigned by
extrapolation.)
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3. Remove weak links

The “data processing inequality” says that if we have links x — y, y — z and

x — z, the link with the smallest M I should be removed.

The hope is to remove indirect, correlations in favor of direct, “causal” links.

The resulting network is tree- (really, forest-) structured (unless there are ties

for weakest link).
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Steady state data with randomly generated network structures, with randomly

Results on simulated expression data from DREAM
varied production and decay rates.
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WGCNA (Langfelder et al., BMC Bioinfo 2008)

BMC BiOi Ilformatics Biol\ll\;dDCentraI

Software

WGCNA: an R package for weighted correlation network analysis
Peter Langfelder! and Steve Horvath *2

Address: !Department of Human Genetics, University of California, Los Angeles, CA 90095, USA and 2Department of Human Genetics and
Department of Biostatistics, University of California, Los Angeles, CA 90095, USA

Email: Peter Langfelder - Peter.Langfelder@gmail.com; Steve Horvath* - shorvath@mednet.ucla.edu

* Corresponding author

Published: 29 December 2008 Received: 24 July 2008
BMC Bioinformatics 2008, 9:559  doi: 10.1186/1471-2105-9-559 Accepted: 29 December 2008
This article is available from: http://www.biomedcentral.com/1471-2105/9/559

© 2008 Langfelder and Horvath; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Some features

Uses Pearson (linear) correlation, Spearman rank correlation or biweight
midcorrelation to connect genes

Functions for “module” detection and graph topology analysis
Functions for correlating genes or modules to a measured “trait”

Functions for visualization

= It's the most cited of all co-expression papers! (2179 as of Oct 15 2017)
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Bayesian Relevance Networks (Ramachandran et al., PLoS ONE

2017)

®PLOS | one

Check for
updates

G OPENACCESS

Citation: Ramachandran P, Sanchez-Taltavull D,
Perkins TJ (2017) Uncovering robust patterns of
microRNA co-expression across cancers using
Bayesian Relevance Networks. PLoS ONE 12(8):
20183103. https://doi.org/10.1371/journal.
pone.0183103

RESEARCH ARTICLE

Uncovering robust patterns of microRNA co-
expression across cancers using Bayesian
Relevance Networks

1om

Parameswaran Ramachandran'®", Daniel Sanchez-Taltavull'®, Theodore J. Perkins'-?*

1 Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H8LS,
2 Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
K1H8M5

® These authors contributed equally to this work.

a Current address: The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer
Centre, University Health Network, Toronto, Ontario, Canada M5G2M9

* tperkins@ohri.ca

Abstract

Co-expression networks have long been used as a tool for investigating the molecular cir-
cuitry governing biological systems. However, most algorithms for constructing co-expres-
sion networks were developed in the microarray era, before high-throughput sequencing—
with its unique statistical properties—became the norm for expression measurement. Here
we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning
about expression levels to account for the differing levels of uncertainty in expression
measurements between highly- and lowly-expressed entities, and between samples with
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Accounting for varying measurement uncertainty

e With RNA-seq, miRNA-seq, different samples’ read depths equate to
varying precision of measurement

e With genes’, miRNAs’ different expression levels, relative precision varies

e Propose Bayesian beliefs over expression levels of gene/miRNA in each
sample (Dirichlet, weak non-uniform priors)

e Quantify co-expression by correlation across conditions and beliefs

TB _ COVc,u(xm yc)
Y \/Varcju(:vc)VarC,u(yc)
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Results on 10,999 miRNA-seq samples from TCGA
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Co-expression networks summary

e In co-expression networks, the genes whose expression is most similar over

a set of conditions are linked
e Similarity can be assessed in several different ways
e Points in favor:
+ Correlation networks can be computed efficiently
+ Readily visualized

+ Subnetwork inspection leads to new hypotheses
+ Can find true / known relationships, as well as many new ones

e Points against:

— Links are directionless, and of unclear meaning
(Though some directional proposals have been made.)
— Links are established pairwise only
— The networks are not predictive. What if gene = were deleted?

Questions?
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QOutline

e (Co-expression networks — linking genes by similarity of expression

— Examples

— Relevance Networks

— ARACNE

- WCNGA?

— Bayesian Relevance Networks?

e Epistasis networks — linking genes by interpreting knockout
phenotypes

— Avery & Wasserman's classical theory
— Data-robust epistasis analysis
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What is epistasis?

Broadly: Epistasis is when deleting/mutating two genes/loci leads to a
“surprising” outcome, when compared each deletion/mutation individually.

E.g., Synthetic lethality, where deleting two genes kills an organism, even
though each individual deletion is harmless (Tong et al., Science 2001)

S188 @, = Lo
o .rms:? e ® o Prasz Oona ®.
©rewso | @, ‘PR “sns3 © Bpmano Lo
® 108/ B v e, ®,
NI ® Pt o MV05 c2z
., LB ..cm ARC18 L J—
. y ol . i
(7 "NBP2 s i
® T
CiN2 @,
; sACE
®ouss Ocn o Sor ..su
MAD2 . SAP155
® ‘Bu = ®a 211w YMLO95G A .[m o .RUDQ
CHLY | @, T L L) St
MADS @51 @, i M2 erz |\ @
L T L2 BEM1 @ ®, SECH6
YK VR ®,
@, B k10 [®ara o o, Y @i CPR7,
MCK1 ® ATS1 [ B [
FAB @ @
@, @ L) @ Hocl 1
MCM22 © ARPS PACH v, 1 @ CHss @,
M3 PACI = O VEROESC PR
MCM21 ® i 1
o NUM1 i i
y “CTF8 ..DV " .
S CHS3
("pcm ° N o 00 ® o, i
o5 Ysapdo APl Bypy 0 Psice g PBuDS i i
g ®usei ®unmo. ."{F‘IB N CHS7. ity
PPZY viR047: SHS1 ® S\
s [ L. . oniae ®rusi'e, 11500 .num. ® .CLM
St ™ @ ) YBLOS1e RS2 GING 'YBLOG2 ARP2
I RADSY @ Conitiow g O Spnrt
L ] VIDZ2 .yLma csM3 ) ®,
Es2' @, H vps2s ™
o, NI By g, ps GL250w
T 5161
: o @ 170w RV: o @
YBRO95C ® . avsior ), TH’i’E
RAD1 SWE s ®
ORN)SI o Cranst o Opsi PRI 'SA ® 09
Q RAD24" | @ DDC ® ® » o, B
@ RADSS RADS2 SAE2 ®. 14 B, 59
L - O oo\ Loz -
Oy yng 1y SPADO = O, e Cuwsst-®pnm ® Cell Polarity
= L RAD27 = 0, O s @ Cell Wall Maintenance
Ogac2 Orera omusm . ® Ce‘!II SFructure
[ v o RADS0 ° @ Mitosis
HSTI @ CLYS? ® YBROIwW
Cizin 0C 8,02 @, VI sis2 i © Chromosome Structure
Oroi [ @i ®s001 6.5 @ DNA Synthesis
o [ 1 2
5308 Oy 171 Oeser © DNA Repair
® Unknown
© Others

A subtler form is epistasis as masking, where the deletion of one gene masks
the effect of deleting another.
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Avery & Wasserman (Trends in Genetics, 1992)

Ordering gene function:
the interpretation of
epistasis in regulatory
hierarchies

LEON AVERY AND STEVEN WASSERMAN

The order of action of genes in a regulatory bierarchy that
is governed by a signal can often be determined by the
method of epistasis analysis, in which the phenotype of a
double mutant is compared with that of single mutants.
The epistatic mutation may be in either the upstream or
the downstream gene, depending on the nature of the two
mutations and the type of regulation. Nevertbeless, when
the regulatory bierarchy satisfies certain conditions,
simple rules allow the position of the epistatic locus in the
Dpatbway to be determined without detailed knowledge of
the nature of the mutations, the patbway, or the molecular
mechanism of regulation.
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Example 1 from A & W — Sex determination in C. elegans

X0 ON OFF male
dosage—> her1 | tra.q —p "gmipheds
XX OFF ON hermaphrodite
genotype X dose her-1 tra-1 phenotype
XO ON OFF
wr g
XX OFF ON
XO OFF ON
Aher-1
XX OFF ON
XO ON OFF o)
Atra-1
XX OFF OFF o)
Ahor XO OFF OFF '®)
Atra-1 XX OFF OFF o)
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Example 1 from A & W — Sex determination in C. elegans

X0
X

ON

dosage— > her-1

male

hermaphrodite
development

XX OFF - hermaphrodite
- epistati
genotype X dose her-1 tra-1 phenotype
XO ON OFF
wr o}
XX OFF ON
XO OFF ON
Aher-1
XX OFF ON
XO ON OFF o)
Atra-1
XX OFF OFF o)
Ahor XO OFF OFF 'e)
Atra-1 XX OFF OFF
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Example 2 from A & W — Apoptosis in C. elegans

-

dead,

ON ON ON engulfed !
|
cell
death —p ced-3 =% ced-1 —p engulfment
signal {
death |
alive,
OFF OFF OFF unengulfed
genotype c.d.s ced-3 ced-1 phenotype
ON ON ON (%)
WT \___,,Q/ ,- ’6“6-|
OFF OFF OFF 7,
ON OFF OFF (0 O
ACGd-S I\M/} .- 6‘ _8-.
OFF OFF OFF N7,
ON ON OFF ,/x;%
Aced-1 \_/ .'6__8-.
OFF OFF OFF 7.
(© O
Aced-3 ON OFF OFF l\"\"'//l/c’)_&
Acedt  OFF OFF OFF N
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Example 2 from A & W — Apoptosis in C. elegans

-

dead,
ON ON ON engu|fed

|

cell
death & X ced-1 —p engulfment
signal !
death |

o . >
epistatic mutation

alive,

OFF OFF OFF unengulfed
genotype c.d.s ced-3 ced-1 phenotype
ON ON ON % 5
WT N
OFF OFF OFF @
ON OFF OFF ©9
Aced-3 M@"‘O\
OFF OFF OFF N7,
ON ON OFF (X %)
Aced-1 l\_/65
OFF OFF OFF 7.
(© 0
Aced-3 ON OFF OFF Mé_&
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The mystery of epistasis

Sometimes the epistatic gene is upstream, sometimes downstream.
One gene may activate the other, or may repress the other.

How can we figure this out, based on observing the mutant phenotypes — and
not the expression of the intermediate genes?
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Assumptions and inference rules

Box 1. Assumptions underlying the

e interpretation of epistasis.
3
(1) There is a signal that affects pheno-

: type. The experimenter can find out the
state of the signal, independently of
genotype or phenotype.

((2) The signal and the two genes under

study are the sole determinants of
phenotype under the conditions of the
experiment.

(3) The signal and the two genes are either
on or off; there are no intermediate
levels of activity. (For instance, partial

K Joss-of-function mutations should be

avoided.)

(4) In the wild type the signal determines

\“\0\ whether one of the genes (the up-

\\3(\ ,‘\ stream gene) is on or off; this in

660‘ ‘(\Q\‘a turn determines whether the second
Q‘a\' (downstream) gene is on or off.

An analysis of all possible combinations
of null and constitutive mutations in both
types of models, summarized in Table 1,
allows three important generalizations:

(1) A given mutation only affects phenotype either
when the signal is on, or when the signal is off, but
not both.

For example, her-1I- null mutations have a phenotype

only in XO worms, and fra-1- null mutations only in

XX worms.

(2) If two mutations have phenotypic effects in oppo-
site signal states and one is epistatic to the other, it
is the downstream mutation that is epistatic to the
upstream mutation.

In sex determination, tra-I- lies downstream of her-1-,

and is epistatic to it.

(3) If two mutations have phenotypic effects in the
same signal state and one is epistatic to the other,
it is the upstream mutation that is epistatic to the
downstream mutation.

In the cell death pathway, ced-3 lies upstream of

ced-1-, and is epistatic to it.
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Rules in tabular form

Tasig 1. Determining gene order in regulatory hierarchies by

epistasis analysis
Which signal Type of mutation
states display
mutant Epistatic Upstream  Downstream  Sign of
phenotypes? mutation gene gene regulation
Null Null +
Same Upstream Constitutive  Constitutive +
' P Null Constitutive -
Constitutive  Null -
Null Null -
Opposite Downstream Constitutive  Constitutive -
PP Null Constitutive +
Constitutive  Null +

The results of analysis of the eight possible cases in which regulation
may be positive or negative and mutations either null or constitutive. In
all eight cases, if there is simple epistasis, the epistatic mutation ¢an be
uniquely predicted to be in either the upstream or the downstrecam gene.
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More examples
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Superscript ¢ denotes constitutive mutations.
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Avery & Wasserman key conclusion

Simple logical rules can tell us when observations of epistasis reveal something
about pathway structure!

e Includes a test for applicability (single deletions influence in just one signal
state)

e (Can reveal upstream/downstream & activation/repression between the
two genes
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Epistasis analysis cannot distinguish certain pathways

input genetic output
signal 1 pathway trait

O3 On OO,

O30 OO,

OO

All arrows indicate activation, and we observed the trait under all possible
wild type and knockout conditions, we always see the same thing!

(See Phenix et al. (Chaos, 2013) for thorough analysis of identifiability.)
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Phenix et al., PLoS Comput Biol 2011

Quantitative Epistasis Analysis and Pathway Inference
from Genetic Interaction Data

Hilary Phenix'?, Katy Morin'3, Cory Batenchuk'?, Jacob Parker*>, Vida Abedi'?, Liu Yang"?>,
Lioudmila Tepliakova'?, Theodore J. Perkins®*, Mads Kaern'*°*

1 Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada, 2 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa,
Ontario, Canada, 3 Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada, 4 Ottawa Hospital Research Institute,
Ottawa, Ontario, Canada, 5 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada, 6 Department of Physics, University of Ottawa,
Ottawa, Ontario, Canada

Abstract

Inferring regulatory and metabolic network models from quantitative genetic interaction data remains a major challenge in
systems biology. Here, we present a novel quantitative model for interpreting epistasis within pathways responding to an
external signal. The model provides the basis of an experimental method to determine the architecture of such pathways,
and establishes a new set of rules to infer the order of genes within them. The method also allows the extraction of
guantitative parameters enabling a new level of information to be added to genetic network models. It is applicable to any
system where the impact of combinatorial loss-of-function mutations can be quantified with sufficient accuracy. We test the
method by conducting a systematic analysis of a thoroughly characterized eukaryotic gene network, the galactose
utilization pathway in Saccharomyces cerevisiae. For this purpose, we quantify the effects of single and double gene
deletions on two phenotypic traits, fitness and reporter gene expression. We show that applying our method to fitness traits
reveals the order of metabolic enzymes and the effects of accumulating metabolic intermediates. Conversely, the analysis of
expression traits reveals the order of transcriptional regulatory genes, secondary regulatory signals and their relative
strength. Strikingly, when the analyses of the two traits are combined, the method correctly infers ~80% of the known
relationships without any false positives.

Citation: Phenix H, Morin K, Batenchuk C, Parker J, Abedi V, et al. (2011) Quantitative Epistasis Analysis and Pathway Inference from Genetic Interaction Data. PLoS
Comput Biol 7(5): €1002048. doi:10.1371/journal.pcbi.1002048
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The galactose pathway in yeast — a test case
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Experiment

e We considered two signal states: galactose absent (but another sugar in
the media) and galactose present (at a certain concentration)

e \We considered two different quantitative phenotypes: growth rate relative

to wild type, and fluorescence reporter expression driven by Gall0
promoter

e \We observed the network in wild type state, and single and pairwise
knockout of every gene
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Results of single knockout experiments

B = no galactose [ = galactose
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e With experimental noise, when are two trait measurements identical?

e A & W's model predicts that a single knockout can only affect the trait in
one of the two signal states
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A statistical model accounting for off-pathway,
signal-independent effects

e Model distinguishes gene absence/presence (X,Y) from their
signal-dependent activities (Xg,Ys)

e Trait depends linearly on Boolean variables S, X, Y, Xg, Yg

e \We use linear regression to fit parameters og, ox, oy, ax, ay across all
experimental conditions

e Signs of parameters statistically significantly £ 0 constitute patterns for
pathway inference
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More concretely ...

T(x,p,8)=To+ox(l—x)+ay(l1—yp)+a; (1 —x)(1—y)+

S oss+ox(xs(x,5)) +oy(ys(x.y.s)),
{ 1 if the signal is ON
§= )

0 otherwise

{ 1 if X is deleted
x:

0 otherwise

{ 1 if Y is deleted
y= .

0 otherwise

(1—x)s if S activates X
XS(X,S) = .
(1—x)(1—s) if S represses X
(1—y)xs if X activates Y
yS(x’yas) = .
(1—py)(1—xg) 1if X represses Y

e Eight choices of “core” pathway structure: X,Y upstream/downstream,
activation /repression for the first two links

e (Core pathways that predict 1" within experimental error are considered
possible explanations

e Extra links depend on whether parameters are significantly + or —

e Predicted X, Y relationships assembled to reconstruct whole network
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Results on the galactose network

from growth data from expression data
Signal \ Signal
GAL2 | HTXs —» GAL2 | HTXs
GAL3 —»> GAL1 G;j-L.’s‘
\ GAL80 ,
GAL10 | GAL10
e ' GAL4 —1— GAL7
GAL4 i /
GALG6

e We are largely able to correctly reconstruct the galactose regulatory and
metabolic pathways
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Key conclusions of Phenix et al. 2011

Epistasis analysis can be successful on “noisy” quantitative data, even with
there are off-pathway effects, using a more general model

e Standard linear regression techniques account for noise and tell us which
parameters are significant

e Our model separately quantifies signal-dependent and signal-independent
effects of the genes in the pathways
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Epistasis analysis conclusions

e Avery & Wasserman laid the foundation for reasoning about patterns of
traits observed upon gene perturbations, and how pathways can be
reconstructed — but sometimes we cannot infer pathway stucture by this
approach

e Much recent work (by us and many others) has aimed at loosening their
assumptions, to account for noisy, quantitative data, off-pathway effects,
complex phenotypes (e.g. probabilities of activation), etc.

e The hunt is on for ways to overcome the limits of classical (& modern)

approaches to epistasis — e.g. our own work on dynamical epistasis
analysis (Awdeh et al. 2015, 2017)

Questions?

52 / 52



	
	Gene expression is regulated by multiple, overlapping networks
	``Direct" experimental measurement of networks
	``Direct" experimental measurement of networks
	Outline
	Example co-expression network (Prieto et al., PLoS ONE 2008)
	Example (Romero-Campero et al., BMC Genomics 2016)
	Co-expression networks
	Relevance Networks (Butte et al., PNAS 2000)
	Their data
	Algorithm outline
	1. Removing low-varability variables
	Targeting outliers?
	2. Compute pairwise Pearson's correlation coefficients
	What constitutes a ``significant" correlation?
	3. Permutation testing to choose a correlation cutoff
	4. Link variables with correlations exceeding threshold
	ARACNE (Margolin et al., BMC Bioinfo 2006)
	The ARACNE algorithm 
	1. Estimate mutual information between variables
	1. Estimate mutual information between variables
	2. Choose a significance threshold 
	3. Remove weak links
	Results on simulated expression data from DREAM
	WGCNA (Langfelder et al., BMC Bioinfo 2008)
	Some features
	Bayesian Relevance Networks (Ramachandran et al., PLoS ONE 2017)
	Accounting for varying measurement uncertainty
	Results on 10,999 miRNA-seq samples from TCGA
	Co-expression networks summary
	Outline
	What is epistasis?
	Avery & Wasserman (Trends in Genetics, 1992)
	Example 1 from A & W – Sex determination in C. elegans
	Example 1 from A & W – Sex determination in C. elegans
	Example 2 from A & W – Apoptosis in C. elegans
	Example 2 from A & W – Apoptosis in C. elegans
	The mystery of epistasis
	Assumptions and inference rules
	Rules in tabular form
	More examples
	Avery & Wasserman key conclusion
	Epistasis analysis cannot distinguish certain pathways
	Phenix et al., PLoS Comput Biol 2011
	The galactose pathway in yeast – a test case
	Experiment
	Results of single knockout experiments
	A statistical model accounting for off-pathway, signal-independent effects
	More concretely …
	Results on the galactose network
	Key conclusions of Phenix et al. 2011
	Epistasis analysis conclusions

